Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Show Protein Plays Critical Role in Heart Failure in Both the Heart and Adrenal Gland

16.11.2005


A protein that plays an important regulatory role in heart failure in the heart also exerts powerful effects on the adrenal gland, Jefferson Medical College researchers have found. The protein, GRK2, is a potential drug target for heart failure.



Walter Koch, Ph.D., director of the Center for Translational Medicine in the Department of Medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and his co-workers had showed previously that GRK2, or G-protein coupled receptor kinase 2, is increased in the heart in heart failure, and shuts off certain receptors called beta-adrenergic receptors, desensitizing them.

When the heart is failing, the body’s sympathetic nervous system, which kicks into gear in the so-called fight or flight response, goes to work, releasing catecholamines – hormones such as epinephrine and norepinephrine in an ill-conceived attempt to stimulate the heart.


Catecholamines are released from two sources – nerve terminals and from the adrenal gland, from which they enter the circulation. Dr. Koch and his co-workers wondered if GRK2 and alpha 2-adrenergic receptor function were affected in the adrenal gland as well. They subsequently looked at adrenal glands from mice in heart failure, and found that GRK2 was increased.

According to Dr. Koch, when neurons release catecholamines, a feedback system that works through alpha 2-adrenergic receptors “is the brake on the system.” They found that mice in heart failure had high levels of GRK2 in the chromaffin cells in the adrenal gland, which caused the downregulation and desensitization of alpha 2 adrenergic receptors.

“Basically, the brake is being shut off,” he says. “We found that catecholamine release was high in adrenal cells in heart failure, and GRK2 appears to be the mechanism.” The researchers report their results November 14, 2005 at the American Heart Association’s Scientific Sessions 2005 in Dallas.

When the scientists reduced GRK2 levels using an inhibitory peptide, ßARKct, catechomine release went down and the alpha 2-receptor function was restored, he notes. It appears that the increased GRK2 is a mechanism for catecholamine release, and contributes to the high catecholamines in heart failure. “The findings show that not only is GRK2 a target in the heart for heart failure, but also in the adrenal gland,” he says.

Next, Dr. Koch’s group is going to use gene therapy in the adrenal gland to decrease GRK2 activity and try to find out whether or not targeting the protein only in the adrenal gland will affect heart function simply by lowering catecholamines.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>