MIT researcher presents new view of how the cortex forms

A leading neuroscientist at MIT and one from the University of California at San Francisco (UCSF) report in the Nov. 4 special issue of Science dedicated to the brain that the controversy is over: The “protomap” and “protocortex” theories of brain development are dead.


The cerebral cortex is a sheet of around 10 billion neurons divided into distinctly separate areas that process particular aspects of sensation, movement and cognition. To what extent are these areas predetermined by genes or shaped by the environment? The protomap and protocortex theories developed before 1990 claimed, respectively, that the task-specific regions of the cortex are spawned by a zone of “originator” cells; or that long nerve fibers from the thalamus, a large ovoid mass that relays information to the cortex from other brain regions, are activated by external stimuli to impose identity on the homogeneous blob.

New evidence indicates that the development of cortical areas involves “a rich array of signals,” an interwoven cascade of developmental events, some internal and some external, according to co-authors Mriganka Sur, Sherman Fairchild Professor of Neuroscience at the Picower Institute for Learning and Memory and the MIT Department of Brain and Cognitive Sciences, and John L. R. Rubenstein of UCSF.

“Recent evidence has altered researchers’ understanding of how cortical areas form, connect with other brain regions, develop unique processing networks and adapt to changes in inputs,” Sur said. “Understanding basic mechanisms of cortical development is central to understanding disorders of development.”

Sur, chair of the Department of Brain and Cognitive Sciences at MIT, is leading an ambitious, multifaceted approach to understanding the genetic, molecular and behavioral aspects of autism.

In the Science review article, “Patterning and Plasticity of the Cerebral Cortex,” Sur and Rubenstein point out that transcription factors are key. A transcription factor is a protein that binds DNA at a specific site where it regulates transcription, or the process of copying genetic material.

In the brain’s early prenatal development, transcription factors control the birth and growth of new neurons, neurons’ movement and connectivity within the brain, and which ones live and which are killed off.

Later, at a critical point in development, activity in the form of outside stimulation refines the brain’s topography and networks to create the specific functions and areas of the postnatal mammalian brain.

Media Contact

Patti Richards EurekAlert!

More Information:

http://www.mit.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors