Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell division: Decrypting the orientation of cell division axis

11.11.2005


At the Institut Curie, two CNRS teams have just reported crucial information on the orientation of cells as they divide. The cell division axis determines not only the position of the daughter cells but also their contents and hence their fate. The researchers have shown that the orientation of division depends on focal adhesions of the cell with its surroundings. They have also identified a new molecule that controls the localization of cellular determinants of so-called asymmetric cell division, thus giving rise to two different cells.

These two studies published in the October and November 2005 issues of Nature Cell Biology shed new light on one of the essential mechanisms in the life of a cell whose deregulation may give rise to cancer.

Division is an essential stage in the life of all cells: it participates in the body’s growth, wound repair, combating infection and in cell turnover. Within our bodies at any given moment some 250,000 million cells are dividing, that is 250,000 million mother cells are in the process of forming 500 000 million daughter cells. As individuals, however, we observe no change. This is because each newly formed cell has a well determined location. The mother cell has a given place among other cells in a tissue and, to avoid perturbing this organization, the daughter cells it produces are also appropriately placed. This very precise positioning is indispensable in maintaining the shape of our tissues and organs. The constraints imposed by the environment influence the division and position of the daughter cells.



Micropatterns control cell adhesion

Manuel Théry in the CNRS team of Michel Bornens(1) has developed an original approach to the study of the effect of space and spatial limitations on the division of adherent cells. By using a micropatterning technique, he imposes the same contour on cells while giving them different adhesion zones. Then, he observes by videomicroscopy how the cells divide. These restrictions reproduce the spatial information that a cell is likely “to sense” within a tissue.

In this way it has been demonstrated for the first time that adhesion proteins play a key part in the orientation of cell division.

Thus, the axis of cell division is oriented as a function of its points of adhesion to its surroundings: the cell can adopt the same shape in different micropatterns, but as this involves different focal adhesions, the orientation of the division is not the same. The focal adhesions govern the distribution of the actin cytoskeleton associated with the cell membrane and impose a specific spindle orientation: when the cell divides, it radically changes shape but keeps at its surface the memory of its focal adhesions. This memory enables orientation of the spindle axis.

This work shows that a protein(2), which is often perturbed in highly metastatic cancer cells, is involved in the orientation of cell division, and this could favor the dissemination of tumors.

This highly original approach therefore yields new findings on cell division and on the mechanisms that ensure it proceeds correctly. It also verifies whether the cells respond correctly to their environment at the time of division, and also helps to understand why the division of tumor cells is perturbed not only temporally but also spatially (orientation within tissue).

Understanding asymmetric division

The two cells formed by the division of a mother cell are not always identical. In the embryo, for instance, division gives rise to various cell types that form the different organs. Likewise, an adult stem cell gives rise to a specialized cell and to a new stem cell, thereby ensuring the conservation of this indispensable cellular type throughout life.

The CNRS team of Yohanns Bellaïche(3) at the Institut Curie are studying these asymmetric divisions in an attempt to understand how the mother cell produces two distinct cells. This sharing of the cell’s contents into two different portions is linked to the orientation of cell division, since the division axis determines how the mother cell splits.

Bellaïche and colleagues have shown that the protein Ric8 plays a key part in the positioning of the division spindle in Drosophila cells. Depending on this axis, the cellular components are separated into two distinct or identical parts.

Complementary views of cell division

Whereas the first study shows which factors determine the orientation of cell division, the second reveals the protein that switches these factors on. These two, fully complementary studies from the Institut Curie afford a new vision of cell division, and in particular of its orientation, a key point in development of the embryo and in correct tissue function in the adult.

These new fundamental data on cell division, whose disruption leads to cancer, are essential for a better understanding of how a cell becomes tumoral.

Catherine Goupillon | alfa
Further information:
http://www.nature.com/ncb/index.html
http://www.curie.fr

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>