Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major EU grant to develop cancer-fighting cells

08.11.2005


A pre-clinical research project coordinated by The University of Manchester, which will advance understanding of how cancer cells evade the immune system, has been awarded nearly €12m by the EU. The European Union Framework Programme (FP6) will enable doctors to improve ‘T-cell mediated immunotherapy’, which has the potential to fight a broad range of cancers.



The five year ‘ATTACK’ Project (Adoptive engineered T-cell Targeting to Activate Cancer Killing), involves an international consortium of 16 partners, who will collaborate on the process of engineering T-cells.

T-cells are part of the body’s immune defense machinery which naturally protects against infections and some cancers and can be used to treat some malignant disease, but many cancers avoid destruction by the immune system. The project team hopes that state of the art technologies can be used to modify the T-cells, to hunt down and destroy cancer tumours.


Robert Hawkins, Cancer Research UK Professor of Medical Oncology at The University of Manchester, said: “Unlike radiotherapy and chemotherapy, which destroy both cancerous and healthy cells, Engineered T-cell Therapy has the potential to selectively destroy cancers within a patient’s body using its own infection-fighting mechanisms. This project focuses on optimising that system in the laboratory.

“The ultimate aim is to develop a process whereby T-cells are taken from the blood of a patient, genetically modified to enable them to target tumours, multiplied in the laboratory and injected in large numbers back into the patient.

The approach stems from original research by Professor Zelig Eshhar in Israel, and the partners include experts in immunology and tumour biology as well as those who have developed key aspects of engineered T-cells. Professor Hawkins continued:

“Already vaccines can prevent certain cancers, and the aim of this project is to develop effective methods to target others. By bringing together many of the leading immunotherapy groups in Europe we will be able to combine basic scientific expertise, new technologies and experience in pre-clinical testing, and our co-ordinated efforts should facilitate enormous progress.

“We expect the project to lead to many more trials in the future and are hopeful it could lead to real improvements in treatment.”

Professor Nic Jones, head of the Paterson Institute for Cancer Research where the project will be based, said: “Developments in cancer treatment are likely to require major team efforts, and we are delighted that the consortium has been awarded this major international grant. Cancer immunotherapy is a very exciting area and one that we are seeking to expand further in Manchester; we are already building a new Gene Therapy Centre funded by the Christie Appeal and are hoping to recruit other leading researchers in this field.”

Caroline Shaw, Chief Executive of the Christie Hospital said; “This is fantastic news for Professor Hawkins and his research team, for Manchester and most importantly for patients. Cancer research in Manchester is going from strength to strength and it’s the patients who will ultimately benefit.”

Jo Nightingale | alfa
Further information:
http://www.manchester.ac.uk/aboutus/news/pressreleases/majoreugranttodevelopcancer-fightingcells7november2005/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>