Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes the brain tick, tick, tick. . .

31.10.2005


The brain is a "time machine," assert Duke neuroscientists Catalin Buhusi and Warren Meck. And understanding how the brain tracks time is essential to understanding all its functions. The brain’s internal clocks coordinate a vast array of activities from communicating, to orchestrating movement, to getting food, they said.



In a review article in the October 2005 Nature Reviews Neuroscience, Buhusi and Meck discuss the current state of understanding of one of the brain’s most important, and mysterious, clocks -- the one governing timing intervals in the seconds to minutes range. Such interval timing occupies the middle neurological ground between two other clocks -- the circadian clock that operates over the 24-hour light-dark cycle, and the millisecond clock that is crucial for such functions as motor control and speech generation and recognition. Meck is a professor and Buhusi is an assistant research professor in the Department of Psychological and Brain Sciences.

Interval timing is central to broader coordination of tasks such as walking, manipulating objects, carrying on a conversation and tracking objects in the environment, they said.


"Interval timing is necessary for us to understand temporal order of events, for example when carrying on a conversation," said Meck. "To understand speech, I not only have to process the millisecond intervals involved in voice onset time, but also the duration of vowels and consonants. Also, to respond, I need to process the pacing of speech, to organize my thoughts coherently and to respond back to you in a timely manner. That’s all interval timing, and in fact it’s hard to find any complex behavioral process that timing isn’t involved in."

Deciphering the neural mechanisms of such clocks may be even more fundamental to understanding the brain than figuring out, for example, neural processing of spatial position and movement, they said.

Said Buhusi, "I would argue that time is more fundamental than space, because one can just close one’s eyes and relive memories, going back in time; or prospectively go forward in time to predict something, without actually changing your position in space."

Understanding the machinery of interval timing is profoundly difficult because it is "amodal," said Buhusi and Meck. That is, the interval timing clock is independent of any sense -- touch, sight, hearing, taste or smell. Thus, it cannot be localized in a discrete brain area, as can the circadian clock, which has clear inputs from the visual system and outputs that control the cyclic release of circadian hormones.

"So, this process has to be distributed so it can integrate information from all the senses," said Meck. "But more importantly, because it’s involved in learning and memory, you could argue that time isn’t directly perceived, but that we make temporal discriminations relative to memories of previous durations. Such features have made the machinery of interval timing more elusive, and some even questioned whether an internal clock of this sort even exists."

In the 1980s Meck and his colleagues at Brown and Columbia Universities proposed what became the traditional theory for explaining interval timing which involved a "pacemaker-accumulator" model. This model holds that somewhere in the brain lurks an independent biological pacemaker that regularly emits neural timing pulses or "ticks." However, more recent research by Meck and his colleagues at Duke, has led to the development of a "striatal beat frequency" model of interval timing involving the "coincidence detection" of oscillatory patterns of neural activity. The striatum is a part of the brain structure known as the basal ganglia, which control basic body functions such as movement.

In this model, explained Buhusi, "each structure in the brain contributes its own resonance, and all these oscillations are monitored and integrated by the basal ganglia or striatal circuits. It’s like a conductor who listens to the orchestra, which is composed of individual musicians. Then, with the beat of his baton, the conductor synchronizes the orchestra so that listeners hear a coordinated sound."

Thus, in essence, the entire brain is an intricate interval timing machine, in which individual structures busy with their own neural tasks, generate resonances that integrate to become ticks of the neural clock.

Meck, Buhusi and their clockwork colleagues are using an array of experimental techniques to try to identify this "baton" timing signal and to refine the theory. These include studies using genetically modified mice, pharmacological tools, recording of electrical brain signals in ensembles of brain cells and functional magnetic resonance imaging of the brain.

For example, they are studying how the clock’s ticking changes in Parkinson’s patients as they change levels of their medication, which effects the amount of dopamine in their brains. Dopamine has been implicated as a key signaling molecule in the neuronal circuitry of the timing machinery.

"When Parkinson’s patients are on their medication, they time quite normally," said Meck. "But as their medication wears off, we can see their clock slow down by recording their brain signals."

Said Meck of their research, "We’re addressing two challenges. One is to find the molecular processes that underlie this internal clock. And the second challenge is to build more realistic models of how this timing process works, with constant, parallel input from throughout the brain." In such studies, the researchers face the daunting process of trying to monitor the intricate swirling of neural activity throughout the entire brain, said Meck.

"Looking at only one place in the brain for the interval clock is like the blind man feeling just the toe of the elephant and trying to describe how it works," he said. "While we’re very excited about our success so far, we want to be modest about our capabilities. We are blind men touching just one part of this elephant that is time.

"And our new review paper, to the best of our knowledge, is the first to try to integrate the different fields and levels of analysis that contribute to understanding timing and time perception, to help advance this exciting field."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>