Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cell communication exposed

31.10.2005


The discovery, by scientists at Monash University and the Sloan Kettering Cancer Centre in New York, of how communication between cancer cells is controlled has promised new treatment options for malignant tumours.



Senior research fellow Dr Martin Lackmann from Monash’s Department of Biochemistry and Molecular Biology is part of the team that has discovered the structure of the molecular switch that controls communication between tumour cells. The "switch" involves a cell-surface protease called ADAM 10 that regulates the signals that promote tumour growth and motility of cancer cells.

Understanding the structure of the ADAM 10 molecule provides the basis for developing pharmaceutical drugs to inhibit tumour growth and metastasis - the spreading of cancerous tumour cells throughout the body.


Dr Lackmann said the findings, published in the latest issue of the international journal /Cell,/ had altered the perception of the way cell signalling molecules - such as growth factor and cell positioning receptors - communicate and regulate processes such as cell adhesion and motility.

"While the critical role of ADAM10 in tumour growth and spreading was clear for a long time, we were unaware how ADAM10 achieved its control on the function of important cell surface molecules, such the Eph and Ephrin cell positioning proteins," Dr Lackmann said.

"We discovered that ADAM10 specifically recognised only Eph and Ephrin molecules that were actively engaged in signalling, and by manipulating the ADAM structure were able to interfere with this molecular recognition and arrest signalling.

"Being able to regulate the communication between these cell surface molecules, which are found at high levels in many human cancers, by preventing the function of ADAM, may actually stop the growth and spread of tumours."

Martin Lackmann | EurekAlert!
Further information:
http://www.researchaustralia.com.au/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>