Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new blueprint to aid physicians in predicting risk for type 1 diabetes

28.10.2005


Undiscovered protein may help identify those whose disease will progress rapidly



Researchers have discovered a combination of tests that can more accurately predict who will develop type 1 diabetes. In the process, they’ve also uncovered signs of a new protein that may forecast a more rapidly developing form of the disease. Together, these findings could help researchers screen patients for clinical trials that eventually may lead to a vaccine or cure for type 1 diabetes.

"We can’t use a vaccine to prevent type 1 diabetes in the general population, like we do for polio, because we don’t know if the vaccine will cause harm or effectively prevent the disease. So we have to identify people at risk first," said Massimo Pietropaolo, MD, a researcher in the Diabetes Institute at Children’s Hospital of Pittsburgh. "Our study and the new research it leads to will help us better predict risk of type 1 diabetes and identify those who can be involved in major trials in the United States and around the world."


Dr. Pietropaolo, who also is an associate professor of pediatrics, medicine and immunology at the University of Pittsburgh School of Medicine as well as an associate professor of epidemiology at the Graduate School of Public Health at the University of Pittsburgh, spoke today at an American Medical Association briefing, Diabetes: Understanding & Advancements, in New York City. He and other researchers from Children’s Hospital of Pittsburgh and the University of Pittsburgh began their study, to be published in the December issue of the journal Pediatric Diabetes, by looking at both older and newer methods of assessing risk for type 1 diabetes in family members of those with the disease.

Older assays, or chemical tests, predict risk for type 1 diabetes by identifying what are called islet cell antibodies. These are produced when the body’s immune system fails to recognize insulin-generating islet cells produced by the pancreas as self, and attacks them as if they were foreign cells. The islet cell antibodies are markers of an attack on the insulin-producing islet cells of the pancreas by the body’s own white cells (T cells) as if the islet cells were outside invaders, thereby decreasing the body’s ability to produce the insulin that helps cells convert sugar into energy.

Newer tests use biochemical markers to detect islet autoantibodies, and these autoantibody responses signify a cause and effect relationship between type 1 diabetes and autoimmune phenomena targeting pancreatic insulin-producing cells. "In the mid 1990s, we found that a combination of autoantibodies could predict type 1 diabetes over time in individuals at risk of developing type 1 diabetes," Dr. Pietropaolo said. "However, there were some patients who were positive for a combination of these biochemical markers but still did not develop type 1 diabetes."

Anytime a marker is used to predict disease, there is some margin of error. But Dr. Pietropaolo and his coauthors wondered if they could do better and if the older assay held the key. In the new study, they looked at both levels of islet cell antibodies and biochemical markers of autoantibodies in 1,484 first-degree relatives of people with type 1 diabetes.

Those who tested positive for the two most commonly recognized autoantibodies had a 14 percent risk of developing type 1 diabetes after 10 years. However, those who displayed those two autoantibodies along with islet cell antibodies had an 80 percent risk after just 6.7 years. "The surprise was that by using these older assays in combination with the newer tests, we were able to more accurately predict type 1 diabetes in the family members of those with type 1 diabetes," Dr. Pietropaolo said.

In addition, family members with a certain subtype of islet cell antibody developed type 1 diabetes after fewer years than others. The study authors suspect that this antibody subtype is recognizing and attacking a previously unknown protein associated with insulin requiring diabetes.

"We now have the tools to predict type 1 diabetes, particularly in relatives of type 1 diabetic patients," said Dr. Pietropaolo. "This paper also opens up a lot of research in the future to identify this new marker associated with rapid progression to type 1 diabetes." Work is now under way in Dr. Pietropaolo’s lab to determine exactly what the new protein is and how it may cause the disease to advance more quickly.

Marc Lukasiak | EurekAlert!
Further information:
http://www.ama-assn.org/

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>