Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Almost like a whale

22.09.2001


Twist in the tail: whales’ wolf-sized ancestors once walked the land
© Photodisc


Fossils bridge gap between land mammals and whales.

Fifty million years ago, two mammals roamed the desert landscapes of what is now Pakistan. They looked a bit like dogs. They were, in fact, land-living, four-legged whales.

Their new-found fossils join other famous missing links, such as the primitive bird Archaeopteryx, that show how one group of animals evolved into another. And they undermine the two prevailing theories about which land mammals are most closely related to cetaceans - whales, dolphins and porpoises1.



"This is an astounding discovery, with tremendous evolutionary implications," comments palaeontologist Zhexi Luo, of the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania. "It’s important progress in mapping out the family tree of the major mammal groups, and will help to resolve some controversies. I’m all cheered up about it."

The new mammals are the fox-sized Ichthyolestes and the wolf-sized Pakicetus. They had meat eaters’ teeth, but were not genuine canines, having longer, more powerful tails, longer snouts and smaller eyes than dogs.

A closer look reveals Ichthyolestes and Pakicetus’ true allegiance. The two have "several strange bones in their ears that occur only in whales", says Hans Thewissen, of Northeastern Ohio Universities College of Medicine in Rootstown, Ohio, one of the fossils’ finders.

They also have a bone in their heel characteristic of even-toed ungulates, such as deer and sheep. An analysis of both skeletons places them, and other cetaceans, in a related, but separate, group from the even-toed ungulates.

"Everyone will agree that these animals are whales," says Thewissen, and yet the wettest they probably ever got was wading across a stream. Other primitive cetaceans recently discovered in Pakistan, dating from 47 million years ago, also have the ungulate anklebone, but their limbs are more adapted for life in the water2.

Toeing the line

Because cetaceans are so unlike any land mammal, with their legs as paddles and their nostrils atop their heads, it has been immensely difficult to place them in the evolutionary scheme of things.

Earlier fossil studies related them to the mesonychians, an extinct group of meat eaters. The new discoveries send this idea "out the window", says Thewissen.

Less likely to be abandoned on the strength of Thewissen’s evidence is an alternative hypothesis, based on DNA sequence analysis. This is the idea that cetaceans are more like hippopotamuses (another even-toed ungulate) than any other land mammal.

"Almost all the molecular data place cetaceans within the living even-toed ungulates, as a sister group to hippopotamuses," says evolutionary biologist Ulfur Arnason of the University of Lund in Sweden.

Rapid evolutionary change, be it molecular, ecological or anatomical, is extremely difficult to reconstruct, and the speed with which cetaceans took to the water may make their bones an unreliable guide to their ancestry, he says

Arnason believes the two camps will remain divided, at least for now. "There’s no point trying to reach some sort of consensus based on compromise. It has often been very difficult to reconcile morphological and molecular opinions," he says.

References

  1. Thewissen, J. G. M., Williams, E. M., Roe, L. J. & Hussain, S. T. Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature, 413, 277 - 281, (2001).
  2. Name, P. D., ul Haq, M., Zalmout, I. S., Khan, I. H. & Malkani, M. S. Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science, 293, 2239 - 2242, (2001).

JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/010920/010920-11.html

More articles from Life Sciences:

nachricht Structure of a mitochondrial ATP synthase
19.11.2019 | Science For Life Laboratory

nachricht Mantis shrimp vs. disco clams: Colorful sea creatures do more than dazzle
19.11.2019 | University of Colorado at Boulder

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>