Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein aggregates in Lou Gehrig’s disease linked to neuron death

27.10.2005


French neurologist Jean-Martin Charcot first described amyotrophic lateral sclerosis (ALS) in 1869, but, nearly 140 years later, little is known about the cause of the devastating neurodegenerative disease, and there is no cure.



What is known about Lou Gehrig’s disease, as it is commonly called, is that misfolded and damaged proteins clump together in cells to form aggregates and motor neurons die. But scientists have long debated whether or not the protein aggregates actually kill the cells.

Now a research team at Northwestern University, using mammalian neurons and live-cell time-lapse spectroscopy, has become the first to clearly link the presence of the ALS-associated mutant SOD1 protein aggregates with neuronal cell death. This evidence could help explain the disease process and eventually lead to new therapeutics.


In the study, published this month in the Journal of Cell Biology, the scientists looked one at a time at neuronal cells expressing the mutant SOD1 protein and found that in cells where the protein accumulated and aggregates formed, 90 percent of the cells went on to die. (They died between six and 24 hours after aggregates were visually detected.) Cells that did not form aggregates did not die.

The study also provides a new understanding of the structure and composition of the deadly aggregates -- one of the first studies to do so.

"We found that these aggregates are quite peculiar and very different from the aggregates formed in Huntington’s disease," said Richard I. Morimoto, Bill A. and Gayle Cook Professor in Biological Sciences, who led the study. Morimoto is an expert in Huntington’s disease and on the cellular response to damaged proteins.

"In Huntington’s, the aggregate is very dense and impenetrable and binds irreversibly with other molecules in the cell," he said. "In ALS, the aggregates are amorphous, like a sponge. Other proteins can go through the structure and interact with it, which may help explain why mutant SOD1 is so toxic." Morimoto believes this surprising finding indicates that the structure of aggregates associated with other neurodegenerative diseases such as Parkinson’s and Alzheimer’s will be found to be different as well.

Looking at individual cells in a population, the researchers also found that cells side by side did different things. In cells expressing the same amount of damaged protein, some cells formed aggregates and died and others did not form aggregates and lived. Only a certain subset of at-risk cells went on to lose function and die.

"It would be terrifying if 100 percent of the cells expressing mutant proteins died," said Morimoto. "This means that in many cases the cell’s protective machinery suppresses the damaged proteins, keeping the cell healthy. This discovery will be important to scientists looking to develop genetic suppressors and therapeutics."

Morimoto’s team focused on SOD1 because it is a form of familial (hereditary) ALS in which a mutation in just one gene and its associated protein has devastating consequences to the cell. (Approximately 10 percent of ALS cases are familial.) This provides experimentalists with a powerful framework. For the other 90 percent the disease is not the result of one mutation but rather a series of many genetic events that debilitate motor neurons. With non-familial forms it is extremely difficult to design hypothesis-based experiments, said Morimoto.

The next question the researchers plan to address is what are the events that lead to cell death once mutant SOD1 protein aggregates form in the cell? This knowledge would help scientists identify small molecules that could halt, arrest or reverse the disease process.

In addition to Morimoto, other authors on the Journal of Cell Biology paper are Carina I. Holmberg, Soojin Kim, Gen Matsumoto (lead author) and Aleksandar Stojanovic, all formerly from Northwestern University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>