Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expression Project for Oncology (expO) collects 1,000th malignant tumor specimen

25.10.2005


Clinically annotated results are publicly available online



The International Genomics Consortium’s (IGC) Expression Project for Oncology (expO) today announced that it has collected its 1,000th frozen cancer specimen, which exceeds original expectations for the project while marking a milestone that is recognized by researchers, industry and academia. Gene expression analysis with clinical information on hundreds of these specimens is now publicly available online.

The purpose of expO is to obtain cancer tissue samples under uniform and standardized conditions, perform gene expression analyses, and collect the long-term clinical outcome of the patient. The data is both collected and shared in a way to ensure the protection of patient confidentiality, while still making the "de-identified" information available online for researchers worldwide. Open and free access to the data will accelerate genetic discoveries and the development of tests and therapies.


"We overcame many challenges to perform complete gene analyses and to have the information freely available online, while also ensuring that we had addressed key issues of patient privacy and consent is a major step forward," said Robert Penny, M.D., Ph.D., Executive Director of expO and Chief Medical Officer of IGC. "Going from zero to 1,000 tumor samples in 16 months was also a considerable feat."

IGC has established a standardization system for obtaining and processing these tumor samples. This standardization of the collection, analysis, and vocabularies will help accelerate future development of new, targeted cancer treatments.

Tissue collection and data dissemination is conducted in a manner that fully protects patient privacy. Over a three-year period, IGC expects to obtain 2,000 to 3,000 tumor specimens representing a broad spectrum of malignancies and 500-1,000 normal tissues. The project is well on its way to meeting this goal. So far, IGC has collected a total of 5,083 biospecimens including frozen biosamples and paraffin tissue blocks containing normal, paranormal and malignant tissue and peripheral blood samples.

"What IGC has accomplished in terms of the expO project could potentially accelerate cancer research," said Franklyn G. Prendergast, M.D., Ph.D., Director of the Mayo Clinic Cancer Center and the Edmond and Marion Guggenheim Professor of Biochemistry and Molecular Biology at the Mayo Medical School. "This publicly available database provides researchers with access to a vast amount of useful cancer information that will ultimately help the community advance its search for new treatments for this devastating disease."

The success of this national philanthropic initiative is due in part to the leadership, vision, and financial support of GlaxoSmithKline, Bristol-Myers Squibb and Wyeth pharmaceuticals.

"The expO database illustrates how industry can partner with academia, hospitals, and non-profit medical research organizations to create a freely available resource that will promote and accelerate discovery.," said Nicholas C. Dracopoli, Ph.D., Vice President of Clinical Discovery Technologies at Bristol-Myers Squibb.

The clinically annotated dataset is available in the public domain through the National Center for Biotechnology Information web site at www.ncbi.nlm.nih.gov/geo/.

Galen Perry | EurekAlert!
Further information:
http://www.tgen.org
http://www.ncbi.nlm.nih.gov/geo/
http://www.intgen.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>