Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RSRF-Funded Research Yields Novel Function for Rett Syndrome Gene

19.10.2005


Huda Zoghbi, of Baylor College of Medicine and the Howard Hughes Medical Institute and Juan Young, also of Baylor and colleagues report in the online Early Edition of the Proceedings of the National Academy of Science, posted the week of October 17, 2005, that the Rett Syndrome gene, MECP2, regulates RNA splicing. This work was funded in part by the Rett Syndrome Research Foundation (RSRF).



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

RTT is caused by mutations in a gene (MECP2) that regulates expression of other genes. Genes are made up of long stretches of nucleotide bases that are divided into exons (sequences that code for protein) and introns (non-coding sequences). Genes make proteins in a multi-step process. The first, called transcription, takes place in the cell nucleus where DNA is copied into RNA. The second step involves cutting out the introns and pasting together the exons to make up the mature RNA. This RNA is then translated into proteins.


There is a wealth of data to suggest that MECP2 is a transcriptional repressor, meaning it turns off or down-regulates the production of other proteins by shutting down transcription. To date, a handful of MECP2 target genes have been identified.

The paradigm of one gene to one protein has recently given way to the realization that genes encode multiple proteins through a process called alternative splicing, whereby different combinations of exons are pasted together. Furthermore, genes can also have multiple functions. This phenomenon helps to explain why humans are so much more complex than worms or fruit flies, despite having similar numbers of genes.

Zoghbi and colleagues discovered that the MeCP2 protein is multifunctional. Beyond its role as a transcriptional repressor it also acts as a splicing regulator. In support of this finding Zoghbi and colleagues observed alternative splicing abnormalities in the mutant mouse model for RTT.

"The finding that MeCP2 functions in two steps of RNA processing, regulation of RNA levels and regulation of the variant molecules that can be generated from these RNAs is quite exciting. RNA splicing occurs extensively in the nervous system and is critical for many key neuronal functions. MeCP2’s role in this process might provide insight about RNA molecules whose altered splicing contributes to the diverse features of RTT and related disorders," stated Huda Zoghbi. "Once we discover the RNA changes responsible for various features of RTT, we can begin to explore pharmacologic targets to alleviate the symptoms of the disease."

"There was never a doubt that RTT is a complex disease. However, we now propose that its molecular etiology is also complex: MECP2, the gene mutated in RTT, encodes a protein involved in controlling not only the quantity, but also the quality of the protein repertoire of the cell. Thus, we believe that our findings should modify the framework for the identification of key players in RTT pathogenesis by adding mis-spliced genes to the challenge," said Juan Young, first author of the paper.

Since its inception in late 1999, RSRF has become the largest private source of funds for RTT research in the world. "Mutations in the MECP2 gene can lead not only to RTT but also to autism and a variety of other mental disorders. This newly discovered role of MECP2 might therefore hold broad implications for understanding these devastating disorders and point to much needed treatments," stated Monica Coenraads, co-founder and Director of Research for RSRF.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>