Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare immune cell is key to transplant’s cancer-killing effect

17.10.2005


U-M discovery could help make bone marrow transplants more effective and an option for more patients



Researchers at the University of Michigan’s Comprehensive Cancer Center have discovered the secret weapon behind the most powerful form of cancer immunotherapy known to medicine.

Scientists call it the graft-versus-leukemia effect, and it occurs when new immune cells from donated bone marrow, called the graft, attack malignant cells in the patient and destroy them. This intense immune reaction between donor and host cells, which follows a bone marrow transplant from a healthy donor, has saved the lives of thousands of patients with leukemia, lymphoma and other types of blood and immune system cancers.


In a study to be published Oct. 16 in the advanced online edition of Nature Medicine, U-M scientists describe how antigen presenting cells are crucial to graft-versus-leukemia’s cancer-killing effect.

The discovery is significant, because it could help make cellular immunotherapy safer, more effective and an option for more cancer patients – especially those for whom a donor is unavailable or those who cannot tolerate the procedure’s side-effects.

"We already knew that donor T cells were important for an effective GVL response, but now we know there’s another cell – the antigen presenting cell or APC – which plays a critical role in the process," says James L.M. Ferrara, M.D., who directs the U-M Cancer Center’s Blood and Marrow Transplant Program.

Antigen presenting cells are rare immune system cells, which look something like a starfish. Their job is to digest proteins called antigens from foreign cells or pathogens and present them to T cells. This alerts the immune system to prepare to fight the invader. When APCs present cancer cell proteins to T cells, the T cells are primed to attack the cancer.

"We found that without functional APCs to process and present antigens to T cells, there is no graft-versus-leukemia response, and the cancer is likely to return," says Pavan R. Reddy, M.D., an assistant professor of internal medicine in the University of Michigan Medical School, who led the research study.

According to Reddy, the research results suggest that manipulating the number and activity of APCs could improve the GVL response, while reducing the risk of a common post-transplant complication called graft-versus-host disease, or GVHD.

"GVHD occurs when the donor’s immune cells attack the patient’s skin, liver and gastrointestinal tract," Reddy explains. "It triggers a massive inflammatory reaction that can kill the patient, especially if he or she is older or has other medical problems."

In an effort to eliminate GVHD, other researchers have suggested removing APCs from transplanted donor cells, according to Ferrara. "We know that APCs are involved in graft-versus-host disease, so people say let’s take out the APCs and then we will get the anti-cancer effect without the risk of GVHD," he explains. "This paper says, no, you can’t do that.

"There’s a tight link between the graft-versus-leukemia effect and graft-versus-host disease," Ferrara says. "Few patients get the beneficial effects of GVL without some degree of the toxic side effects of GVHD. But if we can find ways to reduce GVHD’s toxic effects, immunotherapy could become a viable option for many more cancer patients."

To study what happens during the graft-versus-leukemia effect, Reddy and his U-M colleagues used high doses of radiation to destroy the blood and immune systems of genetically different laboratory mice. After reconstituting each animal’s immune system, using either functional or non-functional APCs, the mice were inoculated with cancer cells and given a bone marrow transplant that could cure the cancer. The scientists then determined which mice died from acute graft-versus-host disease, which mice died from cancer and which mice generated a GVL response to destroy the cancer cells.

"The donor and host mice were paired in ways to make their antigen-presenting cells dysfunctional, either because they were of the same tissue type as the donor, or because they had a mutation that prevented them from displaying tumor antigens to T cells," Reddy explains. "Essentially we created animals where the tumor was the same, the antigens were the same, donor T cells were the same, but the APC was dysfunctional. Without a functioning APC, there was no graft-versus-leukemia effect."

Other researchers have suggested that tumor cells can present antigens to T cells directly to stimulate an immune response against cancer, but results from the U-M study indicate the response is too weak to be effective.

"APCs shred proteins, or antigens, from cancer cells and display those shredded proteins on their surface," Ferrara says. "Cancer cells have the same proteins, but haven’t gone through the APC’s shredding process. It’s as if APCs are master chefs who prepare the antigens in a way to make them especially delicious to T cells. So instead of taking just one bite, they go back for seconds or thirds."

In future research, U-M scientists will explore how to manipulate APC function in ways that will preserve their vital role in stimulating an immune response against cancer, while controlling the intensity of graft-versus-host disease. Reddy and Ferrara have studied drugs called HDAC inhibitors and found that they modulate APC function in mice. They hope to design an initial study of these drugs in post-transplant leukemia patients within a year.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Light-controlled molecules: Scientists develop new recycling strategy
14.08.2018 | Humboldt-Universität zu Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>