Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flu virus reported to resist drug envisioned for pandemic

17.10.2005


An avian influenza virus isolated from an infected Vietnamese girl has been determined to be resistant to the drug oseltamivir, the compound better known by its trade name Tamiflu, and the drug officials hope will serve as the front line of defense for a feared influenza pandemic.

Scientists from the University of Wisconsin-Madison, working with colleagues in Vietnam and Japan, report in a brief communication in next week’s edition (Oct. 20, 2005) of the journal Nature that a young girl, provided with a prophylactic dose of the drug after experiencing mild influenza symptoms, developed a strain of the virus that was highly resistant to the drug.

The finding suggests that health officials - now stockpiling millions of doses of the drug to forestall a global outbreak of influenza and buy time to develop and mass produce a vaccine - should also consider other options, according to Yoshihiro Kawaoka, an international authority on influenza and the senior author of the Nature paper.



Recent reports indicate the federal government may spend billions of dollars to stockpile as much as 81 million courses of Tamiflu to forestall a possible influenza pandemic. The government has already stockpiled an estimated 12 to 13 million courses.

"This is the first line of defense," says Kawaoka, a professor in the UW-Madison School of Veterinary Medicine who holds a joint appointment at the University of Tokyo. "It is the drug many countries are stockpiling, and the plan is to rely heavily on it."

The drug would be used to slow the spread of influenza until a vaccine is developed, which may take up to six months.

Tamiflu is delivered orally and works to impede the spread of the virus by binding to and inhibiting one of the surface enzymes the virus uses to exit infected cells of a host. Once inside a host cell, the virus commandeers the cell’s reproductive machinery to make new infectious particles that go on to take over other cells. When the drug is at work, Kawaoka explains, "the virus is still able to replicate inside a cell, but is unable to get out and infect other cells."

Oseltamivir, which Kawaoka describes as an "amazing drug," is one of three compounds proven to be effective against influenza. One class, derivatives of the compound adamantine, would be less effective, as some flu viruses have already evolved resistance to it. The other drug, zanamivir, which was developed prior to oseltamivir, is effective, but is formulated as a powder and requires that a clinician provide instructions for use. Thus, it is more cumbersome to administer than the orally delivered Tamiflu.

These flu-fighting drugs, says Kawaoka, are by no means a replacement or alternative to a vaccine. Effective vaccines can confer immunity, preventing the virus from gaining a toehold in the body. But it is unlikely sufficient quantities of a vaccine can be produced and stockpiled prior to the emergence of a new virus in human populations.

If avian influenza does emerge and becomes infectious from human to human - and nearly all experts agree that will happen at some point in the future - an outbreak similar to the 1918 influenza pandemic could occur. That pandemic killed as many as 50 million people, more than died on all the battlefields of World War I. Scientists and vaccine manufacturers would be in a race against time to produce enough doses to forestall disaster. Drugs like Tamiflu, used in combination with quarantine, would be intended to slow the spread of the disease until a vaccine is produced.

Kawaoka says there may not be enough Tamiflu to go around even though countries are stockpiling it. The Wisconsin scientist says that will create a risk of patients sharing the drug and using smaller doses, which could accelerate the emergence of virus resistant to the drug and hamper efforts to contain the spread of the disease.

He says health officials should consider stockpiling zanamivir and recommending that only the therapeutic dosages of Tamiflu be administered to patients.

"We’ve been watching for this change (in the virus)," Kawaoka says. "This is the first, but we will see others. There’s no question about it."

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>