Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double trouble: Cells with duplicate genomes can trigger tumors

14.10.2005


Study confirms century-old theory about cancer causation



Abnormal cell division that yields cells with an extra set of chromosomes can initiate the development of tumors in mice, researchers at Dana-Farber Cancer Institute have shown, validating a controversial theory about cancer causation put forth by a scientific visionary nearly 100 years ago.

The so-called "double-value" cells are produced by random errors in cell division that occur with unknown frequency. The generation of these genetically unstable cells appears to be a "pathway for generating a tumor," says David Pellman, MD, a pediatric oncologist at Dana-Farber and at Children’s Hospital Boston. He is the senior author on a report in the Oct. 13 issue of Nature. Takeshi Fujiwara, PhD, and Madhavi Bandi of Dana-Farber, are the paper’s co-first authors.


The research was performed in experimental animals, but such "double-value" cells are seen in a variety of early human cancers and in a precancerous condition called Barrett’s esophagus. In addition to the extra chromosomes, the "double value" or "tetraploid" cells also duplicate a cell structure called the centrosome that plays a role in maintaining a stable genome. The extra centrosomes may be at the root of the cancer-triggering process. Once the genetic instability sets in, tumors "evolve " by losing, gaining and rearranging chromosomes.

Late-stage tumors commonly have too many centrosomes and a near triploid chromosome number (one and a half times the normal chromosome content). Because the cells with extra chromosomes and centrosomes are biologically different from normal cells, cancer drugs designed to kill them while sparing normal cells are "an interesting possibility," says Pellman, who is also an associate professor of Pediatrics at Harvard Medical School.

The researchers treated normal breast cells with a compound that interfered with the final step of cell division, causing many of them to have the extra chromosome set. To make the cells more likely to become malignant, the researchers used cells that lacked a protective gene, p53 that is inactivated in many forms of cancer. Compared with normal breast cells, the double-value cells tended to be genomically unstable.

When injected under the skin of laboratory mice, about 25 percent of the animals developed breast cell tumors, and these tumors, like the tetraploid cells that seeded them, were also marked by similar chromosomal irregularities.

The new findings confirm a far-sighted notion of Theodor Boveri, a German scientist of the 19th Century who was one of the discoverers that the chromosomes in the nucleus of the cell carry the material of heredity, or genes. In 1914, he published what Pellman calls an "amazingly accurate and prescient" treatise suggesting, among other things, that genetic instability was a cause of malignant tumors.

One way to obtain this lack of chromosomal integrity, Boveri proposed, was a result of cells failing to divide normally, generating the double-value or tetraploid cells. Normally, human cells carry a "diploid" set of chromosomes – that is, 22 pairs plus an "X" and "Y" chromosome in males and two "X" chromosomes in female. Tetraploid cells contain 44 pairs plus the sex chromosomes.

"Our experiments test an idea that’s been percolating along among cell biologists for many years but was never really embraced by the cancer community," says Pellman. "We set up this experiment to test it in a real cancer setting."

A companion paper being published simultaneously in Nature by Randy King and colleagues at Harvard Medical School reports that tetraploid cells may arise more frequently than had been thought. According to Pellman, the instability of tetraploid cells may have played a role in evolution, because many organisms, including humans, are thought to have undergone ancient genome doublings.

The therapeutic implications arise from biological differences between the tetraploid cells and normal cells that might make the tetraploid-derived cancerous cells vulnerable to doses of drugs that aren’t harmful to the normal cells and tissues. " In other experiments, we identified genes in a model organism-- yeast-- that are essential for the survival of tetraploid cells but not for cells with a normal number of chromosomes" Pellman says. "You knock out those genes, and the tetraploid cells die. We are eager to find out if this can be extended to cancer cells and the new animal model should help us do this."

Janet Haley Dubow | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>