Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study finds direct role for glial cells in brain cross-talk

11.10.2005


Findings may help elucidate mechanisms of wake-sleep transitions and epileptic seizures


Astrocytes, a non-neuronal cell of the brain, are responsible for coordinating neuronal networks. Courtesy of Olivier Pascual and Philip Haydon, University of Pennsylvania School of Medicine, Department of Neuroscience



Researchers at the University of Pennsylvania School of Medicine have demonstrated that star-shaped glial cells in the brain called astrocytes are directly involved in regulating communication between neurons. A central finding of the study is that astrocytes modulate the level of a signaling molecule called adenosine, which is thought to be important in controlling wake-to-sleep transitions and epileptic seizures.

"This finding may cause neuroscientists to radically alter their view of the role of astrocytes as merely supportive to one of actively communicating with and instructing neurons," states senior author Philip G. Haydon, PhD, Professor of Neuroscience. "Astrocytes are not just the ’kitchen cells’ of the brain, providing nutritional support, but instead also help the neurons talk to each other." Haydon and colleagues published their results in last week’s issue of Science.


The central nervous system, which includes the brain and spinal cord, is composed of specialized cells called neurons that send out and receive chemical signals called neurotransmitters across a space called the synapse. This process results in transmission of a nerve impulse. Historically, the glial cell or astrocyte was considered to be a support cell and to play no active role in regulating nerve impulse transmission. However, recent research by Haydon and other investigators has indicated that glial cells do produce chemical transmitters called gliotransmitters and that these chemical signals are recognized by the neurons. The studies that have shown capability were conducted on isolated nerve cells or on slices of brain tissue.

In this most recent study, the researchers made genetic manipulations to glial cells in live mice, thus directly demonstrating how astrocytes function in the brain. The mice were engineered to produce a protein called SNARE in their astrocytes. When the SNARE protein was produced, the amount of adenosine decreased.

When adenosine accumulated, nerve impulses were suppressed and could not be transmitted across the synapse. This helps explain why high adenosine levels can suppress epileptic seizures.

In contrast, low levels of adenosine increased the transmission of nerve impulses. The modulation of neuronal activity through the regulation of the level of adenosine in the synapse may explain the nature of wake-to-sleep transitions during periods of drowsiness.

"The next step is to study the behavior of these mice during manipulation of adenosine levels in the brain," says Haydon.

The study was a collaboration between Haydon and Stephen Moss at Penn and Ken McCarthy, University of North Carolina, Chapel Hill. The lead author was Olivier Pascual, a post-doctoral fellow in Penn’s Department of Neuroscience. Co-authors are Kristi Casper, Cathryn Kubera, Jing Zhang, Raquel Revilla-Sanchez, Jai-Yoon Sul and HajimeTakano.

This study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health. This release and related images can also be found at: www.uphs.upenn.edu/news

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Gut microbiome regulates the intestinal immune system, researchers find
19.12.2018 | Brown University

nachricht Greener days ahead for carbon fuels
19.12.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>