Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New unidirectional molecular rotor may lead to tiny sensors, pumps, switches

10.10.2005


A University of Colorado at Boulder team has developed the first computer-generated model of a tiny, waterwheel-like molecular rotor that has been harnessed to rotate in one direction at different speeds in response to changes in the strength of an electrical field applied from the outside.



The synthetic molecule features a chemical axle with two attached "paddles" carrying opposite electrical charges, which is mounted parallel to a gold substrate surface, said Professor Josef Michl of CU-Boulder’s chemistry and biochemistry department. The researchers found that the microscopic rotor -- constructed with a few hundred atoms -- will turn in a desired direction at a selected frequency using an oscillating electrical field concentrated in a tiny area above the molecule.

Such molecular rotors may someday function as nanotechnology machines and be used as chemical sensors, cell-phone switches, miniature pumps or even laser-blocking goggles, he said. A paper by Michl and former CU-Boulder postdoctoral student Dominik Horinek, the Feodr Lynen Fellow of the German Humboldt Foundation, appeared in the Oct. 4 issue of the Proceedings of the National Academy of Sciences.


In March 2004, the CU-Boulder research group led by Michl reported the synthesis of these molecules and their mounting on a gold surface -- the world’s first surface-mounted artificial molecular rotor, which turned spontaneously in random directions at room temperatures. While the team was able to make the rotor "flip" using electricity, the new computer model indicates such rotors can be harnessed to turn in one, desired direction at varying, prescribed speeds, he said.

"We are very pleased," said Michl. "The computer model tells us we will be able to manipulate the frequency of rotor revolutions by changing the strength of the outside electrical field."

The researchers were able to make the new molecular rotor model turn at three different speeds by adjusting the electrical field strength at a given oscillation frequency, he said. The behavior of the rotor responds both to the imposed electrical field and frictional drag within the gold substrate on which the device is anchored, as well as the natural thermal movements of molecules, known as Brownian motion.

The molecular rotors designed and constructed by Michl and his colleagues are an outgrowth of a "Molecular Tinkertoy Kit" the group developed in the 1990s. Made up of chemical rods and connectors tens of thousands of times smaller than the width of a human hair, the parts -- which are made primarily of carbon atoms-- have been used to assemble a variety of simple nanostructures over the past decade.

Complex molecular motors, including the protein, ATPase -- which fuels most cellular processes in living things -- are found throughout the natural world, Michl said. "Ours is much more primitive and one hundred times smaller, and is but a first step."

Michl’s group hopes to design a rotor with larger "paddles" and to power it with either a liquid or gas fluid rather than electricity. "Ultimately, we would like to use light pulses to drive the rotor and make it pump fluid. At that point we would have a motor, which is something that actually does useful work, rather than a rotor, which merely idles."

Michl said modeling the behavior of molecular rotors with powerful computers saves a significant amount of time and money in the research process. "Modeling allows us to discard designs that are not fruitful," he said. "We can save a lot of labor and cost by modeling them in the computer first, and only then synthesizing them in the laboratory."

Michl is collaborating with several others in CU-Boulder’s chemistry and biochemistry department, including research associates Thomas Magnera and Jaroslav Vacek and graduate students Debra Casher and Mary Mulcahy. He also works closely with Professors Charles Rogers and John Price of the CU-Boulder physics department, as well as faculty members at Northwestern University.

Funded primarily by the U.S. Army Research Office and the National Science Foundation, the research could lead to new technology to produce goggle coatings that would shield human eyes from blinding lasers, said Michl. Arrays of rotors laid down in a protective coating would rest perpendicular to the goggle surface and allow light through. But when a laser pulse arrived at the goggles, the rotors would push the paddles into a parallel position to block incoming light.

Michl is one of 19 CU-Boulder faculty members who have been elected to the National Academy of Sciences, which publishes the Proceedings of the National Academy of Sciences.

Josef Michl | EurekAlert!
Further information:
http://www.colorado.edu
http://www.pnas.org/content/vol0/issue2005/images/data/0506183102/DC1/06183Movie1.mpg

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>