Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hair-raising stem cells identified

06.10.2005


Swiss study shows that hair follicles contain bonafide multipotent stem cells



Using an animal model, a research team led by Yann Barrandon at the EPFL (Ecole Polytechnique Federale de Lausanne) and the CHUV (Lausanne University Hospital) has discovered that certain cells inside the hair follicle are true multipotent stem cells, capable of developing into the many different cell types needed for hair growth and follicle replacement. In an article appearing in the Oct 3 advance online edition of the Proceedings of the National Academy of Sciences, they demonstrate that these holoclones can be used for long-term follicle renewal.

In 2001, Barrandon was part of a French research team who reported in the scientific journal Cell that stem cells could be used to generate skin containing hair and sebaceous glands in mice. But at that time it was unclear whether the stem cells in hair follicles were true stem cells, capable of long-term renewal, or multipotent progenitor cells that would not permanently engraft in the follicle.


In the current PNAS study, the Swiss researchers have answered that question, using rat whisker hair follicles to demonstrate that the clonogenic keratinocytes in hair follicles are true stem cells.

Barrandon’s group isolated stem cells from rat whisker follicles, labelled them, and grew them in culture for 140 generations. They then implanted progeny cells into the skin of newborn mice whose hair follicles were just being formed. This skin was then grafted onto athymic (nude) mice. Some cells were incorporated into developing follicles, but other follicles were completely made up of labelled cells. Each progeny cell contributed to the formation of eight different types of cell in the follicle, including those of the outer root sheath, inner root sheath, the hair shaft, the sebaceous gland and the epidermis.

After 125 days, a biopsy was taken from the graft, and labelled stem cells were isolated, subcloned, cultivated and then once again transplanted. The rat whisker stem cells participated again in forming all the cell types needed to form the hair follicle and sebaceous glands, resulting in hair bulbs that underwent repeated normal phases of growth, rest and regeneration. The fact that the transplanted cells participate in the hair cycle over long periods of time shows that they are true multipotent stem cells and not progeniture cells.

"With the progeny of a single stem cell, it would be theoretically possible to generate the complete hair bulb of a human being, and one that would last for years," explains Barrandon.

The ability of the stem cells in hair follicles to repeatedly regenerate all the different cell types of the follicle and sebaceous glands has important implications for regenerative medicine. The method could one day be used to regenerate hair on patients with severe burns. This study is a logical complement to other work in Barrandon’s Laboratory of Stem Cell Dynamics, recognized for research into the reconstruction of injured tissues and organs.

Yann Barrandon | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>