Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show key protein necessary for normal development of red blood cells

05.10.2005


Virginia Commonwealth University researchers studying hemoglobin genes, mutations of which play a role in genetic blood disorders like sickle cell anemia and beta-thalassemia, have shown in studies with mice that the KLF2 protein is crucial for making young red blood cells.



The findings may point researchers to future gene therapies for patients with sickle cell anemia and beta-thalassemia.

In the October issue of Blood, the journal of the American Association for Hematology, researchers demonstrated that a protein called KLF2 regulates the production of embryonic globin genes and the maturation and stability of embryonic red blood cells in a mouse model. Researchers observed that KLF2 is responsible for controlling and “turning on” the embryonic globin gene.


“Understanding how genes are turned on and off, and the switch from the embryonic globin gene to the adult beta-globin gene has clinical relevance to treatment of sickle cell anemia and beta-thalassemia,” said Joyce A. Lloyd, Ph.D., associate professor of Human Genetics at VCU, and corresponding author for this study.

“Our findings are significant for future treatment of these blood disorders, potentially using gene therapies and other novel strategies,” she said. In gene therapy, a normal DNA is inserted into cells to correct a genetic defect. To correct the defect or mutation, a gene may be replaced, altered or supplemented.

According to Lloyd, the production of blood cells involves a complex differentiation pathway that involves the interaction of many molecular players and proteins.

In humans, there are four globin genes clustered on chromosome 11 in the order in which they are “turned on” or expressed. These genes include the epsilon-globin gene, two gamma-globin genes and the beta-globin gene. Lloyd said that during fetal development, the embryonic epsilon-globin gene is active first, followed by the gamma-globin genes, and finally the adult form, beta-globin takes control following birth.

Lloyd and Priyadarshi Basu, Ph.D., lead investigator at VCU, and the research team compared mice that were missing the gene for KLF2 to normal mice. They found that the KLF2-deficient mice produced embryonic red blood cells that appeared abnormal, were more likely to undergo cell death, and produced significantly lower amounts of globin mRNA than those found in normal mice. Globin mRNA is a key player in gene expression that helps translate the DNA’s genetic code.

Lloyd and her colleagues identified that the role of KLF2 for the embryonic epsilon-globin genes is analogous to that of a protein called EKLF. EKLF plays a central role in the developmental regulation of the adult beta-globin gene, and is essential for the maturation and stability of adult red blood cells. Researchers believe that the roles of EKLF and KLF2 may partially overlap in controlling human embryonic and fetal globin gene expression.

This research was supported by a grant from the National Institutes of Health.

Lloyd collaborated with colleagues in the VCU Department of Human Genetics, and the VCU Department of Anatomy and Neurobiology; the Department of Molecular Genetics, Biochemistry and Microbiology at the University of Cincinnati; and the Department of Medicine at the University of California-San Francisco.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>