Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phytochemicals may protect cartilage, prevent pain in joints

05.10.2005


Phase 2 enzyme inducers appear to stop harmful inflammation



Johns Hopkins researchers have discovered that plant-derived compounds known for their ability to protect tissue also appear to block the activity of an enzyme that triggers inflammation in joints. Their findings, based on experiments with human cells in a lab, could lead to new arthritis treatments and better methods of making artificial cartilage.

The discovery was detailed in a paper published in the Sept. 27 edition of Proceedings of the National Academy of Sciences.


The findings came to light while the researchers were studying the wildly different ways in which cells in human blood vessels and joints respond to pressure gradients generated from liquid moving along their surface, a force called shear stress. In cells that line blood vessels, the reaction to shear stress is beneficial: the boosting of phase 2 enzymes that may protect the cells from cancer-causing chemicals and other toxic agents. Yet in joints, the response to high shear stress is potentially harmful: an increase in the levels of COX-2 enzyme, which triggers inflammation and pain, and suppresses the activity of phase 2 enzymes, ultimately causing the death of chondrocytic cells. Healthy chondrocytes are responsible for the smooth functioning of joints. When chondrocytes stop functioning properly, the result can be arthritis.

The divergent responses to shear stress prompted a series of experiments in a Johns Hopkins lab supervised by Konstantinos Konstantopoulos, associate professor of chemical and biomolecular engineering and Agarwal-Masson Faculty Scholar. His team knew that strenuous exercise or heavy exertion of muscles can cause joints to increase the levels of harmful COX-2 enzyme. What would happen, the researchers wondered, if the vulnerable chondrocyte cells in human joints were first exposed to the beneficial phase 2 enzymes?

To find out, the researchers obtained compounds that boost the activity of helpful phase 2 enzymes. They added these phase 2 inducers to a dish containing the chondrocyte cells that are crucial to maintaining healthy joints. After 24 hours, the cells were subjected to a stress test designed to mimic aspects of strenuous exercise on a joint as well as the hydrodynamic environment in a bioreactor designed to generate artificial cartilage.

The results were surprising. "The beneficial phase 2 enzymes somehow seemed to prevent the activation of the inflammatory COX-2 enzyme," said Zachary R. Healy, a doctoral student in Konstantopoulos’ lab and lead author of the journal paper. "The phase 2 enzymes inhibited the inflammation and the apoptosis -- the cellular suicide we’d observed."

Some prescription drugs like Vioxx keep COX-2 enzyme at bay by temporarily blocking its ability to send the biochemical signals that set off pain and inflammation. When the medication is stopped, however, the stockpiled COX-2 enzyme can resume its damaging ways. Unlike these traditional pain killers, Healy said, the phase 2 enzyme inducers seemed to stop the increasing activity of COX-2 enzyme.

"That means these compounds could be useful as a preventive measure, perhaps before strenuous exercise," Healy said. "This has the potential for stopping pain and inflammation before they start."

Although these experiments appeared to be the first to determine how phase 2 enzyme inducers affect chondrocytes, these compounds have been studied extensively by researchers at the Johns Hopkins School of Medicine. Paul Talalay, the medical school’s John Jacob Abel Distinguished Service Professor of Pharmacology, has shown that phase 2 enzymes can detoxify certain cancer-causing agents and damaging free radicals in tissue, including cells that line blood vessels. He has isolated compounds in edible plants that boost production of phase 2 enzymes. These phytochemicals can be found in cruciferous plants, including broccoli.

Talalay provided one of the phase 2 inducers used in Healy’s experiments. "This was the first work done in applying these phytochemicals to chondrocytes, which are constantly under the influence of forces because of the way we move our joints," Talalay said. "The phase 2 inducers seemed to counteract the effects of that stress by inhibiting the expression of COX-2 enzyme. It’s interesting to think that people may be able to obtain this benefit through dietary components."

By showing a way to ward off inflammation and by providing insights into the effects of shear stress, the new chondrocyte research may also aid tissue engineers who are trying to grow artificial cartilage or seeking to revitalize human cartilage in the lab. This is important because human bodies cannot make new cartilage to replace tissue that’s lost to injury or disease.

"More research is needed," said Konstantopoulos, who directed and supervised the experiments. "But these discoveries could provide guidelines for designing an ideal hydrodynamic environment in bioreactors for generating functional cartilage as well as for the treatment of osteoarthritis."

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>