Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist uses form to explain function of key building blocks of life

04.10.2005


University of Wisconsin-Madison biochemists have developed an approach that allows them to measure with unprecedented accuracy the strengths of hydrogen bonds in a protein. The scientists were then able to predict the function of different versions of the protein based on structural information, a novel outcome that was published recently in the Proceedings of the National Academy of Sciences.

Professor of biochemistry John Markley, along with a team that included graduate student I-Jin Lin, studied iron-sulfur proteins called rubredoxins that transfer energy in the form of electrons throughout living systems.

Rubredoxin is a key part of processes like photosynthesis and respiration, where energy is converted from one form to another.

"Variants of rubredoxin have evolved different sequences to transport electrons in the most efficient manner possible," Markley explains. "Different mechanisms have been put forward to explain this, and we wanted to understand how the proteins evolved to have different electron affinities."



Markley and his team used nuclear magnetic resonance spectroscopy, a technique that allowed them to observe signals from atoms in the proteins, to determine the strength of hydrogen bonds in ten different variants of the protein. From that data, the team was able to explain changes in protein function.

"In science, you try to build theories that will explain the properties of the systems you are looking at," explains Markley. "Proteins are the basic building blocks of life, and are coded for by the genes in DNA. We’d like to be able to start with a gene sequence and predict the structure of a protein and its function. In this case, given an NMR pattern, we can tell you how the protein will act. In general, this method may provide information about even more complex biological systems. This is an approach that will be important for larger proteins."

Markley notes that an undergraduate and graduate student played key roles in the study. Lin, who plans to complete her Ph.D. this spring, spent years tackling what Markley described as a "complex and difficult project."

Erika Gebel, the undergraduate on the study, is now pursuing a graduate degree of her own, a pursuit that was enhanced by this project, says Markley.

"(Undergraduate research) enables them to understand what research is and what’s involved in exploring something that hasn’t been observed before," he says.

John Markley | EurekAlert!
Further information:
http://www.nmrfam.wisc.edu

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>