Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research could help us deliver genes for new bone formation

29.09.2005


UK scientists are working on new methods to regenerate cartilage and bone by delivering genes to stem cells within the body to instruct them to turn into bone cells. The research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), could lead to a new approach to tissue engineering. With the ageing populations of Western countries it holds the potential of significant benefits for patients needing joint replacement or similar treatments.

The new research will use tiny nanoscopic systems that cross the surface of a stem cell and then deliver the genes into that prompt the cell to turn into a bone cell.

Professor Richard Oreffo at the University of Southampton and Dr Martin Garnett and Professor Kevin Shakesheff at the University of Nottingham are developing scaffolds to act as a coating around the nanoscopic gene delivery systems. The scaffold controls the release of the gene delivery systems to generate the prolonged formation and development of bone tissue.



The research teams are using the scaffold technology to develop therapeutic applications. They are investigating the most efficient and effective combinations of genes and delivery scaffold to trigger the highly complex process of bone formation. The technique, if successful, could provide a new source of bone tissue for orthopaedic procedures.

Professor Richard Oreffo, who is leading the team at the University of Southampton, said, "The key to the process is careful selection of the right genes for the job, and then identifying the right scaffold delivery mechanism to deliver the genes to enough stem cells to initiate the bone formation process. This method of gene delivery could provide significant healthcare benefits as trauma, degenerative disease and bone loss with old age all lead to patients needing orthopaedic procedures that require new bone.

Professor Oreffo added "It is important that we explore the potential of new methods and biotechnologies to help meet the healthcare needs of an ageing population. Although research such as this is currently a number of years from being available to patients it is important that fundamental research is carried out so we can develop the knowledge that can lead to clinical applications."

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Joining forces for immune research
13.08.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>