Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperature regulates circadian clock in zebrafish

27.09.2005


The biological clock controls the circadian rhythms of a wide range of physiological and behavioral processes, from fluctuating hormone levels to sleep–wake cycles and feeding patterns. While it’s well known that circadian clock elements sense and respond to light cycles, much less is known about how daily temperature cycles affect the clock’s timing mechanism in vertebrates. In the open-access journal PLoS Biology, Kajori Lahiri, Nicholas Foulkes, and their colleagues study temperature related responses at the genetic and molecular level in zebrafish. This genetically tractable model organism is especially suited to this task because adults, larvae, and even embryos can tolerate a wide range of core body temperatures (being cold-blooded animals) that can be manipulated simply by changing the water temperature. Temperature variations of as little as 2 ºC (35.6 ºF) can reset the zebrafish clock, Lahiri et al. show, and precise shifts in temperature trigger significant changes in the expression of specific clock genes. More explicitly, clock genes per4, cry2a, cry3, and clock1 showed rhythmic expression under temperature cycles when animals were raised in the dark, and the expression profiles during the high temperature phase matched those seen during a light phase when animals experienced light-dark cycles.



Zebrafish cell lines also proved valuable tools for studying temperature response, showing a similar pattern of clock gene expression during cycles of small temperature changes and continued entrainment of clock gene expression even after the cells were exposed to constant temperature. Acute temperature shifts can also trigger significant changes in clock gene expression (transcript levels of per4 and cry3 dropped after a temperature increase and spiked after a temperature decrease; cry2 showed the opposite response)--changes wrought by temperature-dependent shifts in the behavior of transcriptional regulators, as in the case of per4.

Altogether these results show that temperature can regulate the circadian clock in this vertebrate. If the temperature-induced transcriptional responses described here operate in other temperature-related responses, they may shed light on how temperature affects other biological systems as well, including mammals.

Paul Ocampo | EurekAlert!
Further information:
http://www.plos.org
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>