Human beta-cell line offers hope for type 1 diabetes breakthrough

Transplantation of insulin-producing pancreatic beta-cells shows great promise as a treatment for type 1 diabetes, but development of this therapy has been hampered by a severe shortage of donor beta-cells, which are obtained from decreased human donors. In research published in the October issue of Nature Biotechnology, Ji-Won Yoon, PhD, Professor of Pathology and Director of the Rosalind Franklin Comprehensive Diabetes Center at Rosalind Franklin University of Medicine and Science, Dr. Naoya Kobayashi (Okayama University Graduate School of Medicine and Dentistry), and their international colleagues describe a “reversibly immortalized” cell line that can supply large amounts of insulin-producing human beta-cells. Ultimately, a cell line of this sort may provide an abundant source of beta-cells for transplantation and an alternative to beta-cells from cadavers.

Type 1 diabetes results from the loss of insulin-producing beta-cells in the pancreas. Because the supply of beta-cells from cadavers is insufficient to meet the needs of 99% of diabetic patients, alternative sources of beta-cells would be highly desirable. Previous efforts to coax mature human beta-cells to survive and replicate in the laboratory have not succeeded, however, because the cells died or lost their ability to produce insulin in response to sugar stimulation.

Dr. Yoon, Dr. Kobayashi and colleagues got around this problem by manipulating and analyzing large numbers of human beta-cells. First, they added genes that extend cell lifespan to human beta-cells and looked for the rare cells that did not form tumors and that expressed insulin or other beta-cell proteins. Out of more than 250 cells lines screened, only one passed this test. This cell line was allowed to replicate to produce large numbers of cells. Then, the genes that extend cell lifespan were removed to ensure that the cells would not form tumors and to promote beta-cell behavior. The resulting cells produced about 40% as much insulin as normal beta-cells and successfully controlled blood sugar levels in diabetic mice for more than 30 weeks.

While further research is needed before these cells can be considered for testing in humans, plans to develop a “universal beta-cell line” are well underway, and Dr. Yoon anticipates that human clinical trials might begin as soon as three to five years from now. The discovery of this technique to create a reversibly immortalized beta-cell line represents a significant leap in the quest to develop an effective and universal treatment for type 1 diabetes; it is estimated that 18.2 million Americans suffer from diabetes. The long-term impact of this discovery, and those that will follow, will undoubtedly be profound and far-reaching.

Media Contact

Kathy Peterson EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors