Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water channel protein implicated in relative of multiple sclerosis

22.09.2005


Researchers have identified a molecular suspect in a disorder similar to multiple sclerosis (MS) that attacks the optic nerve and spinal cord, according to a report presented at the 130th annual meeting of the American Neurological Association in San Diego. The protein, called aquaporin-4, is a channel protein that allows water to move in and out of cells.

"Aquaporin-4 is the first specific molecule to be defined as a target for the autoimmune response in any form of MS," said author Vanda A. Lennon, MD, PhD, of the Mayo Clinic in Rochester, Minnesota. "It is also the first example of a water channel being the target of any autoimmune disorder."

Because there are many other variants of aquaporins throughout the body, Lennon suggests that these proteins might play a role in poorly understood autoimmune disorders in other organ systems.



For some time, scientists have understood that multiple sclerosis is not so much a single disease, but a category of disorders with similar damage to different parts of the nervous system. Recently, progress has been made in teasing out a particular syndrome called neuromyelitis optica (NMO), in which the body mistakenly mounts an immune attack against the optic nerve and spinal cord.

Last year, Lennon and her colleagues at Mayo, along with collaborators in Japan, were able to detect a particular antibody that occurrs in most people with NMO, but not in patients with "classical" MS.

This is particularly important for clinicians because specific treatment recommendations to help prevent blindness and other later symptoms, including paralysis, differ for NMO and MS .

In the present study, Lennon and colleagues have identified an aquaporin as the target molecule of the NMO antibody. "This finding is a departure from mainstream thinking about MS and related disorders, where the major focus of research in the past century has been the myelin that insulates nerve fibers, and the cell that manufactures myelin, known as the oligodendrocyte," said Lennon.

The Mayo Clinic group’s work reveals that the protein targeted by the NMO antibody is not a component of myelin, or of oligodendrocytes. Aquaporin-4, which is the most abundant water channel in the brain, is instead located in a different type of cell called astrocytes. "Aquaporin-4 is concentrated in membranes in the precise site where spinal cord inflammation is found in NMO patients," said Lennon.

The next step in this research is to use this knowledge to create an animal model that can be used to confirm the relationhip between aquaporin-4 and NMO, as well as to develop new and improved therapies.

Crystal Weinberger | EurekAlert!
Further information:
http://www.aneuroa.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>