Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding IGF-1: Jefferson Researcher Sees Drug Potential in Targeting Enzyme

21.09.2005


He has labored for years over trying to understand and detail the behavior of insulin-like growth factor-1 (IGF-1) receptor, a protein which plays an important role in tumor growth. Several years ago he and his co-workers discovered that normal cells lacking the IGF-1 receptor gene could not be made to turn cancerous. He found that when they “knocked out” IGF-1 receptors in cancer cells, the cells self-destructed, meaning the IGF-1 receptor was somehow necessary for tumor cell growth. Companies are interested in targeting the IGF-1 receptor with the idea of killing cancer cells, he says.



According to Dr. Baserga, who is professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and acting director of Jefferson’s Kimmel Cancer Center, in the past few years, scientists have learned that the IGF-1 receptor is also a key growth factor that regulates cell and body size. Deleting the genes for the IGF-1 receptor and its docking protein IRS-1 result in mouse and fly embryos that are only 50 percent of normal size.

“This tells you in essence that the IGF-1 receptor and its docking protein control 50 percent of body size in a non-redundant way,” he says. “This was an important finding because it established the role of IGF-1 receptor and IRS-1 in controlling body size.”
Reporting August 19, 2005 in the Journal of Biological Chemistry, Dr. Baserga and his co-workers provide one possible molecular explanation for how this occurs.



They found that when IRS-1 is activated with the IGF-1 receptor, ß-catenin, a protein important in colon and breast cancer is turned on. “We’re the first ones to discover that IRS-1 goes to the cell nucleus, where it binds a protein, ß-catenin, in the nucleus that regulates RNA polymerase 1, the enzyme that controls cell size,” he explains.

He doesn’t think that IRS-1 is the exclusive activator, but rather, one of several. “It makes sense,” he says. “When you knock out the IRS-1 gene, you get flies that are 50 percent in size, so there are other ways to make cells proliferate. Cells without the IGF-1 receptor can grow.”

Several years ago, Dr. Baserga, who pioneered much of the understanding of the basic behavior of the IGF-1 receptor, and his co-workers used knockouts – specially bred mice lacking a particular gene – to develop a cell line without IGF-1 receptors. Normal cells grew, but would not turn cancerous when placed in rodent cells with added cancer-causing genes.

The finding suggested that if cells that lacked IGF-1 receptor could not be turned cancerous, perhaps cancerous cells with IGF-1 could be reversed. “If this is true in humans, then this is a rational target,” he says. Studies by companies in the last few years have found that antibodies and various small molecules made to the IGF-1 receptor kill cancer cells without toxicity, he notes.

“The general idea is that if you find something that knocks out the IGF-1 receptor, you will kill the cancer cells and have only a modest effect on normal cells – at least using cells in culture and in mice,” he says. Several years ago, for example, Dr. Baserga and his group used antisense therapy to target the IGF-1 receptor, which killed cancer cells in mice but didn’t work as well in people. However, clinical trials are just beginning, he says, and he is still hopeful that other approaches will work in humans.

In the meantime, pharmaceutical companies continue to pursue potential drugs and small molecules that target the IGF-1 receptor, and still seek Dr. Baserga’s help.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>