Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers invent ’hitchhiking’ viruses as cancer drug delivery system

19.09.2005


Mayo Clinic research team has devised a new virus-based gene therapy delivery system to help fight cancer. Researchers say their findings will help overcome hurdles that have hindered gene therapy cancer treatments.



The Mayo research team, which includes a collaborator from the United Kingdom, describes its new approach in the current edition of Nature Medicine.

The approach relies on "therapeutic hitchhikers" -- particles derived from retroviruses (RNA-containing viruses that incorporate into the genomes of infected cells and then produce a therapeutic gene). The viral particles attach to a specific kind of T cell in the immune system and "hitchhike" to the tumor because T cells home in on tumors naturally; T cells are the immune system’s major line of defense against tumors. By hitching a ride on the T cells, the therapeutic particles can hit their tumor target while avoiding detection (and destruction) by the immune system. When the Mayo team experimented with the hitchhiking approach in mice using human and mouse cancer cells, they observed significant cure rates of metastatic -- or spreading -- tumors.


"Any clinical situation in which cells home to disease sites -- such as inflammation or autoimmune disease -- might benefit from this approach," explains Richard Vile, Ph.D., Mayo Clinic molecular immunologist and lead researcher of the investigation. "Our work is an important contribution to the maturation of the field of gene therapy because ultimately treating cancers by gene therapy depends on scientists’ ability to specifically target tumor cells in the patient -- and this specific-delivery feature has eluded researchers for a variety of reasons. But by devising a way for viruses to hitch rides on antigen-specific T cells, we’ve been able to get over multiple obstacles to gene therapy."

Dr. Vile emphasizes that the work is still experimental and not yet ready for use in human patients. But if larger studies validate these findings, the therapeutic hitchhiker approach may be employed in clinical trials of new treatments.

Significance of the Mayo Research

The Mayo investigators have invented a simpler method for using modified viruses to transport therapeutic genes to tumors. They are the first to exploit traits of retroviruses during the infection process of a cell in which attachment to the cell can occur in a nonspecific way. This opens up new opportunities for using viruses therapeutically because this method of attachment allows researchers not only to target particular cells, but also to more easily gain entry into the cells -- which they must do to deliver therapeutic genes to destroy tumors. The T cells also help kill tumors.

About the Investigation

Using mice, the Mayo Clinic team showed that retrovirus particles could successfully attach to the surface of primary T cells and then safely hitchhike -- be carried through the bodies of mice that had fully functioning immune systems and evade detection by the immune system -- to reach tumors, the sites of T cell accumulation. They further showed that once it reached the tumor, the viral transporter successfully transferred a gene to both mouse and human tumor cells that then infected the cells. This proved that the concept works.

Collaboration and Support

In addition to Dr. Vile, the Mayo Clinic research team included Caroline Cole, Ph.D.; Jian Qiao, M.D., Ph.D.; Timothy Kottke; Rosa Maria Diaz, Ph.D.; Atique Ahmed; Luis Sanchez-Perez; Gregory Brunn, Ph.D.; and Jill Thompson. John Chester, M.B.B.S., Ph.D., collaborated from the Cancer Research UK Clinical Center, St. James’ University Hospital, Leeds, UK. The work was supported by grants from Mayo Foundation and the National Institutes of Health.

Robert Nellis | EurekAlert!
Further information:
http://www.nature.com/nm/index.html
http://www.mayoclinic.com
http://www.mayo.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>