Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stressed cells spark DNA repair missteps and speed evolution

16.09.2005


When Dr. Susan Rosenberg, professor of molecular and human genetics at Baylor College of Medicine, first published her finding that the mutation rate increased in bacteria stressed by starvation, sometimes resulting in a rare change that benefited the bacteria, it was controversial.



In a report in the current issue of the journal Molecular Cell, she and her colleagues describe not only how it happens but also show that this only occurs at a special time and place in the stressed cells.

It all begins with the way that the cell repairs breaks in the double strands of DNA that are its genetic blue print. Usually, when this happens, special protein machinery in the cell copies the missing DNA from another chromosome and rejoins the broken ends around the newly synthesized genetic material.


"It fixes the hole in the DNA by copying similar information," said Rosenberg. However, when the process goes wrong, the repair process introduces errors into the DNA.

When graduate student Rebecca G. Ponder set up a system so that she could control where the break in DNA occurred, she found that errors occurred right next to the break in the stressed cells, and that the rate of errors was 6,000 fold higher than in cells whose DNA was not broken. "It’s really about local repair," said Rosenberg. Not only that, but subsequent experiments proved that this mechanism of increased mutation at sites of DNA repair occurs only in the cells under stress. "Even if you get a break in a cell, it won’t process it in a mutagenic way," said Rosenberg. "The cell repairs it, but does not make mutations unless the cell is stressed."

The findings support the notion that the increased mutation rate may give the cells a selective advantage, she said. Faced with starvation, most cells do not increase their mutation rate. Then if food becomes available again, they do well.

Among the small percentage that do increase mutations, most of the errors are neutral, not affecting cells at all. Many are deleterious, resulting in cell death. But a small percentage is advantageous, allowing the cells to survive in an adverse environment.

The fact that the changes in the rate of mutation occur only in a certain physical space at a certain time gives the cells advantage because it reduces the risk to the whole colony. DNA breaks occur only rarely in each individual cell. If the mutations are restricted in time and space, it reduces the risk that the mistakes in repair will affect some other gene. It can also enhance the likelihood of two mutations occurring in the same gene or neighboring genes.

"This can speed evolution of complex protein machines." Rosenberg said.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>