Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Modeling Reveals Hidden Conversations Within Cells

16.09.2005


UCSD biochemists have developed a computer program that helps explain a long-standing mystery: how the same proteins can play different roles in a wide range of cellular processes, including those leading to immune responses and cancer.


Cells use the timing of signals to communicate, similar to the way a telephone wire carries information about conversations. Credit: Alexander Hoffmann, UCSD



Prior to the UCSD team’s findings, which are published in the September 16 issue of the journal Science, many scientists expressed doubts that a computational approach could represent the intricate mechanisms through which cells respond to outside signals. However, the researchers report that their computer model accurately predicts particular behaviors of living cells. They also believe that the model has important practical applications, including guiding the design of better treatments for cancer and other diseases that involve failures in cell communication

“Our computational approach revealed how the same set of proteins produce physiologically different outputs in response to only subtly different inputs,” explained Alexander Hoffmann, an assistant professor of chemistry and biochemistry, who led the team. “This is the first step toward developing drugs that interfere with one of the pathological functions of the proteins, but leave the healthy functions intact. For example, many current cancer drugs dramatically reduce immune function. Computer modeling should make it possible to design anti-cancer drugs that do not weaken patients’ immune systems.”


The computer model comprises 70 equations to account for the behavior of five proteins and three RNA molecules in the “NF-kappaB signaling pathway,” which regulates genes involved in cancer, inflammation, immune function and cell death. Each equation takes into account a different parameter, such as how quickly a protein is synthesized, or how quickly it is degraded.

The researchers chose the NF-kappaB proteins because there is a wide body of prior research that they were able to draw on to set the initial parameters in the model. As they were developing the model, they repeatedly tested and refined it by comparing the model’s predictions with the results of experiments with living cells.

“The beauty of this kind of interdisciplinary work is the almost circular way the model’s predictions drive the design of new experiments, and the how results of those experiments can be fed back into the model to improve it,” said Shannon Werner, a graduate student in chemistry and biochemistry, who did the experimental work described in the paper.

Once the model consistently predicted the behavior of living cells in a variety of experimental conditions, the researchers used the model to infer what was going on inside cells in much greater detail than would be possible through laboratory experiments alone.

The model revealed why two natural chemicals have opposite physiological effects. When exposed to one of the chemicals, the proteins create positive feedback that lengthens the amount of time they are active. When exposed to the other chemical, they initiate negative feedback, which shuts them down rapidly.

“The prevailing view has been that proteins are either on or off like a light switch, but that didn’t explain how activating the same proteins with different chemicals could have opposing effects on cells,” explained Hoffmann. “Our model shows that, analogous to how a telephone transmits an infinite number of different signals along a single wire, it is the timing of the proteins’ activity that allows them to exert intricate control over the behavior of a cell. The computer model reveals the hidden conversations in the cell’s wiring.”

The researchers attribute their success in developing the computer model, despite criticism that the computational approach would require too many simplifications to accurately model cell communication, to the diverse expertise they brought together.

“Developing a computer model is both science and art,” said Derren Barken, a graduate student in bioinformatics and experienced software engineer, who programmed the model. “It requires intuition built up over time, but it also requires someone like Alex, who can critically evaluate the scientific literature to decide what parameters need to be included in the model, and someone like Shannon who can take the predictions of the model and design experiments to test them in the laboratory.”

The study was supported by the National Institutes of Health, the National Science Foundation and the UC Academic Senate.

Media Contact: Sherry Seethaler (858) 534-4656
Comment: Alexander Hoffmann (858) 822-4670

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>