Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water management in cells

16.09.2005


Water management is the key to regulating cell volume says Dutch researcher Bas Tomassen. He investigated the uptake and secretion of water by the plasma membrane of animal and human cells.



Cell volume is the outcome of a subtle balance between water uptake and secretion by the cell plasma membrane. A cell can regulate its volume by adjusting the salt concentrations in and around the cell. Exactly how this process works is still not known. Bas Tomassen has identified a number of important mechanisms that play a role in this process.

Increasing the salt concentration in the cell or decreasing the salt concentration around the cell leads to an influx of water. This principle is known as osmosis. Cells activate various channels to remove excess water and salt or osmotically active particles from the cell.


Tomassen studied cells that are highly sensitive for osmotic disruption. He discovered that cells permeable for water can more easily respond to changes in salt concentrations and that volume changes are facilitated by the presence of specific channels that transport water.

Slow organic reaction

In addition to water channels and ion channels, organic particles play an important role. If the salt balance is disrupted, so-called ’volume-regulated anion channels’ are first of all activated. These ensure that chloride ions leave the cell. Further research revealed that the efflux of organics only starts one or two minutes later. This efflux only takes place if there is a large difference between the intracellular and extracellular salt concentrations. From this the researcher concluded that the efflux of organics is a second line of defence, which is only activated if there are considerable problems.

All organisms in the natural environment are confronted with salt balances in and around their cells. Plants, bacteria and fungi have an extra cell wall that provides the cell with additional protection. Animal cells, such as human cells, do not have this. They have developed other mechanisms, a number of which have been identified by Bas Tomassen.

Bas Tomassen’s research was funded by NWO.

Dr S.F.B. Tomassen | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6FRG9J_Eng

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>