Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding Complexity of p53

15.09.2005


Researchers at the University of Dundee have discovered new levels of complexity in the regulation of the tumour suppressor gene p53, findings which could have a significant impact on the identification of patients at risk of developing aggressive cancer and in determining more efficient drug treatments.



The research has been led by Professor Sir David Lane and Dr Jean-Christophe Bourdon of the Cancer Research UK Cell Transformation Group at the University of Dundee. Prof Lane famously discovered the p53 protein, and continues to lead cutting edge research in this field.

The new findings, which are to be published on the 15 September in the journal, "Genes and Development", show that the p53 gene, the most frequently inactivated gene in human cancer, does not produce only one unique p53 protein as previously thought, but at least six different p53 proteins (isoforms). They also established that expression of p53 isoforms is abnormal in breast tumours.


"The discovery of p53 isoforms is a major breakthrough in the understanding of cancer formation," said Dr Bourdon.

"The determination of p53 isoform expression in human cancers will help to identify patients at risk of developing aggressive cancer and to define their drug sensitivity in order to treat the patient with the most efficient drugs."

"The deregulation of p53 isoform expression in tumours provides an explanation on how tumours can develop while they express a non-mutated p53 gene. As p53 isoforms are abnormally expressed in tumour cells, p53 is not fully active and does not destroy every cell which leads to cancer formation."

The different isoforms of p53 contain sections of the normal p53 protein, each put together in a slightly different way. All six isoforms can be found in normal human cells, though their levels vary in different tissues. Some of these isoforms can interact with full-length p53 to affect its tumour suppressing activity, suggesting that interactions between the different protein isoforms may be key in regulating p53’s normal role.

p53 activity is lost in over half of human tumours, which emphasises the importance of the p53 protein in preventing tumour formation. However, one of the puzzles facing workers in the p53 field is the role of p53 in tumours where it remains apparently normal.

Dr Bourdon and Prof Lane have examined the levels of these newly discovered p53 isoforms in breast tumours and find that some isoforms are present at abnormal levels in tumours which have otherwise normal p53.

This suggests that, in these tumours, p53 activity is being lost by altered isoform expression, rather than by mutation of the p53 gene itself. This important new finding tells us that alterations in levels of specific isoforms may play an essential role in tumour formation by regulating p53 activity. This new model will help to explain how p53 function in individual tumours is linked to the sensitivity of that tumour to drug treatment and give us new tools in the treatment of breast and other cancers.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk/pressreleases/prsept05/p53.html
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>