Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding Complexity of p53

15.09.2005


Researchers at the University of Dundee have discovered new levels of complexity in the regulation of the tumour suppressor gene p53, findings which could have a significant impact on the identification of patients at risk of developing aggressive cancer and in determining more efficient drug treatments.



The research has been led by Professor Sir David Lane and Dr Jean-Christophe Bourdon of the Cancer Research UK Cell Transformation Group at the University of Dundee. Prof Lane famously discovered the p53 protein, and continues to lead cutting edge research in this field.

The new findings, which are to be published on the 15 September in the journal, "Genes and Development", show that the p53 gene, the most frequently inactivated gene in human cancer, does not produce only one unique p53 protein as previously thought, but at least six different p53 proteins (isoforms). They also established that expression of p53 isoforms is abnormal in breast tumours.


"The discovery of p53 isoforms is a major breakthrough in the understanding of cancer formation," said Dr Bourdon.

"The determination of p53 isoform expression in human cancers will help to identify patients at risk of developing aggressive cancer and to define their drug sensitivity in order to treat the patient with the most efficient drugs."

"The deregulation of p53 isoform expression in tumours provides an explanation on how tumours can develop while they express a non-mutated p53 gene. As p53 isoforms are abnormally expressed in tumour cells, p53 is not fully active and does not destroy every cell which leads to cancer formation."

The different isoforms of p53 contain sections of the normal p53 protein, each put together in a slightly different way. All six isoforms can be found in normal human cells, though their levels vary in different tissues. Some of these isoforms can interact with full-length p53 to affect its tumour suppressing activity, suggesting that interactions between the different protein isoforms may be key in regulating p53’s normal role.

p53 activity is lost in over half of human tumours, which emphasises the importance of the p53 protein in preventing tumour formation. However, one of the puzzles facing workers in the p53 field is the role of p53 in tumours where it remains apparently normal.

Dr Bourdon and Prof Lane have examined the levels of these newly discovered p53 isoforms in breast tumours and find that some isoforms are present at abnormal levels in tumours which have otherwise normal p53.

This suggests that, in these tumours, p53 activity is being lost by altered isoform expression, rather than by mutation of the p53 gene itself. This important new finding tells us that alterations in levels of specific isoforms may play an essential role in tumour formation by regulating p53 activity. This new model will help to explain how p53 function in individual tumours is linked to the sensitivity of that tumour to drug treatment and give us new tools in the treatment of breast and other cancers.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk/pressreleases/prsept05/p53.html
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>