Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI scientists make major finding on potential smallpox treatment

14.09.2005


Research could lead to treatment that would help stop a smallpox outbreak



Researchers at the La Jolla Institute for Allergy & Immunology (LIAI) have made a major advancement toward protecting society against a smallpox outbreak by identifying an antibody in humans that quickly fights the smallpox virus.

"This is a very important finding because it has the potential to be an effective treatment for smallpox in humans and therefore could help quickly stop a smallpox outbreak," said Mitchell Kronenberg, Ph.D, LIAI President. The finding is contained in a paper entitled "Vaccinia H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice" that was published in the September issue of the Journal of Virology. LIAI scientist Shane Crotty, Ph.D., a viral disease expert, led the team of LIAI scientists which made the finding. Dr. D. Huw Davies and Dr. Phil Felgner of the University of California, Irvine Center for Vaccine Research were also major contributors.


Dr. Crotty and his team have discovered a protein in the smallpox virus – the H3 protein -- that elicits a particularly strong human antibody response. "Out of the 200 or so proteins contained in the smallpox virus, we found that the H3 protein is a major target for antibodies that kill the virus," he said. No actual smallpox virus was used in the studies in order to avoid any potential danger of transmission.

Dr. Crotty made the findings by studying blood samples from people who had received the smallpox vaccine. "We used new techniques that we developed that made it easier to identify and isolate antibodies from the blood of immunized humans. Then we carefully screened for the antibodies that fight the smallpox virus," he said. The researchers then tested their findings by creating a batch of the anti-H3 protein antibodies, which they injected into mice. "We were able to protect them from a strain of vaccinia pox virus that is very similar to smallpox and which is lethal to mice."

The National Institutes of Health is now funding further research by Dr. Crotty to better understand the molecular processes surrounding the finding. He said one focus of the research will be to fully develop anti-H3 antibodies in the lab that can be given to humans. "We’ll be working to further characterize and develop the use of this antibody as a treatment for smallpox," Dr. Crotty said.

The smallpox virus has been the subject of intense research interest worldwide in the last several years, prompted by bioterrorism concerns. The virus was eradicated in the U.S. by 1950 and vaccinations for the general public were ended in 1972. But in the aftermath of 9-11, new concerns have arisen that the smallpox virus could be used as a bioterrorist agent. Disease experts fear that samples of the smallpox virus may have fallen into the hands of terrorists at some point. This concern has led to the creation of worldwide stockpiles of the smallpox vaccine over the last several years.

Kronenberg said that if further study continues to validate the safety and effectiveness of Dr. Crotty’s finding, "we may one day see high-quality batches of anti-H3 antibody stockpiled around the world right along side the supplies of smallpox vaccine.

"While we do have a smallpox vaccine, there are concerns because people who are immuno-compromised cannot use the current vaccine," he added, "including infants and the aged." Additionally, if there were a smallpox outbreak, there would be a certain time lapse before all people who have not been inoculated could receive the vaccine. Unlike the vaccine, the antibody would work to provide immediate, although short-term protection, similar to how an antibiotic treats and for a short time protects against a bacterial infection.

"This makes Dr. Crotty’s research even more interesting because his findings appear to offer a way to successfully treat the virus," Kronenberg said. "This could be very important should people become infected before they have a chance to be vaccinated."

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>