Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular antacids give vaccines a boost

12.09.2005


Scientists in Italy have found that a drug that blocks acid buildup inside cells revs up the immune response to vaccines. Reporting in the September 19 issue of The Journal of Experimental Medicine, Vincenzo Barnaba and his team at the University of Rome show that people receiving booster shots against hepatitis B virus developed more robust immune responses if given a widely used anti-malaria drug called chloroquine.



Many vaccines are made up of soluble proteins derived from dangerous viruses or bacteria. But because of the way these proteins are broken down by cells, they do a poor job of prodding killer cells called cytolytic T cells into action. Cytolytic T cells are responsible for identifying and executing infected cells, so finding ways to get more of these cells activated is an important goal for vaccine development.

Barnaba and his colleagues now show that exposing cells to chloroquine prevents the acidification of cellular compartments into which vaccine proteins are taken up. Normally these proteins would be digested rapidly inside the compartment, but this is prevented by chloroquine because the degradation requires an acidic environment. The chloroquine treatment also made the vesicles leaky, allowing the proteins to escape into the cytoplasm of the cell. From there, they could be broken down such that small pieces of the protein are displayed to nearby cytolytic T cells; recognition of these small pieces of protein activates the killer cells.


The demonstration that a single dose of chloroquine boosted hepatitis B virus-specific T cell responses in up to 70% of vaccine recipients suggests that this readily available, oral drug might be a promising vaccine supplement.

Nickey Henry | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>