Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers zero in on estrogen’s role in breast-cancer cell growth

12.09.2005


Why do estrogen-dependent breast-cancer cells grow and spread rapidly? Researchers at the University of Illinois at Urbana-Champaign say it may be because estrogen virtually eliminates levels of a vitally important regulatory protein.



In a paper that will appear in the Sept. 13 issue of the Proceedings of the National Academy of Sciences, the scientists report that human breast-cancer cells exposed to estrogen in their laboratory showed a dramatic reduction in numbers of a crucial nuclear receptor corepressor, a protein known as N-CoR (pronounced "en CORE"). They also found that the anti-estrogen drug tamoxifen, often used in breast-cancer treatments, encouraged N-CoR recovery, a beneficial activity. The paper was published online last week.

"Because estrogen has the ability to reduce the levels of N-CoR, estrogen then can promote the proliferation and progression of breast cancer, because the balance of co-activators and co-repressors involved in normal gene transcription is altered," said Benita S. Katzenellenbogen, a Swanlund Professor of Cell and Developmental Biology at Illinois. She also is a professor of molecular and integrative physiology.


The findings may have sweeping implications, said Katzenellenbogen and lead author Jonna Frasor, a postdoctoral researcher who joins the faculty of the department of physiology and biophysics in the U. of I. College of Medicine at Chicago this month.

For one, the mechanisms at play could explain at least some of the mixed results seen in women using estrogen and progesterone in hormone therapy, said Katzenellenbogen, who also is a professor in the U. of I. College of Medicine at Urbana-Champaign.

While numbers of N-CoR proteins fell to 20 percent of normal, the level of N-CoR’s messenger RNA went untouched. The reduction of N-CoR followed an up regulation of the ubiquitin ligase Siah2, an enzyme that targets certain proteins for degradation, Frasor said.

"Here we had an effect on the level of the N-CoR protein without affecting the level of N-CoR mRNA," Katzenellenbogen said. "This is the result of the initial effect of estrogen on gene expression, which was to up regulate the mRNA levels for a ubiquitin ligase. So by changing the level of this ligase, it had a dramatic effect on the level of N-CoR protein without affecting gene expression for N-CoR itself."

This "secondary effect" may have broad implications for other important cellular activities, the researchers theorize. Reductions in N-CoR over time also could promote cancer development in other sites, such as the uterus, and could adversely affect the desired activities of vitamin D, retinoid and thyroid receptors, Katzenellenbogen said.

The study sheds light on the impact of estrogen on certain cells, as well as how tamoxifen works as an anti-estrogen to facilitate recovery of N-CoR, she and Frasor said.

"Eventually," Katzenellenbogen said, "understanding more of the mechanisms involved could lead to the development of other related agents that might reduce some of the unwanted side effects of tamoxifen, such as stimulation of the uterus."

In addition to Katzenellenbogen and Frasor, Jeanne M. Danes, a researcher in the department of molecular and integrative physiology, and doctoral student Cory C. Funk were co-authors of the study.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>