Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The (Cell) Matrix Reloaded

12.09.2005


A world-class research facility investigating diseases such as osteoarthritis, cardiovascular disease and cancer has been awarded a further £3 million to continue its groundbreaking work.



The University of Manchester’s Wellcome Trust Centre for Cell-Matrix Research has had its core grant renewed – securing infrastructure funding for the next five years.

The Centre, one of only five such Wellcome Trust-funded facilities in the UK and the only one in its field, is home to 21 independent research groups and a total of 170 scientists.


Established in 1995, the Centre is an interdisciplinary research hub whose long-term aims are to clarify the structure and function of extracellular matrices and cellular adhesion.

“The cell matrix is the material in the body in between the cells,” explained Professor Martin Humphries, Associate Dean for Research in the Faculty of Life Sciences and the Centre’s Director.

“Only two per cent of our body is made up of cells, the rest is the material that endows elastic tissue, bone tissue, ligaments and tendons with their physical and functional properties – that’s what we call the matrix.

“Our research aims to define the contribution of cell interactions with matrices to human diseases, and develop approaches for preventing and treating those diseases.

“For instance, there is currently enormous interest in developing ways to modify stem cells for treating joint diseases and brain diseases such as Alzheimer’s, but we believe it is critical to give those cells the right environment in which to live.

“Since cells are closely integrated with their surrounding matrix, when regenerating tissues it is logical to provide cells with the correct niche to help them develop in the right way. That’s where our research into the cell matrix comes in.”

“The work done here impinges on virtually all human diseases, although we have specific interests in cancer, vascular disease and osteoarthritis.

“In cancer, we are looking at the role adhesion plays in regulating tumour spread, while with osteoarthritis we are looking to replace damaged cartilage.

“The research where we’re closest to clinical trials, perhaps as soon as next year, is vascular engineering where we want to replace vessels affected by vascular disease.”

The Centre, which is based in the new, state-of-the-art Michael Smith Building, boasts one of the world’s best collection of scientists in this field; the grant, says Professor Humphries, will help facilitate their pioneering work for a further five years.

“Securing this core funding for a third time is a major accomplishment, and it will allow us to secure new equipment and to cover the salaries of key support staff,” he said.

“The core award helps provide the infrastructure necessary to carry out all of our specific project research. These projects are supported by £30 million worth of research grants, two-thirds of which are funded by the Wellcome Trust.”

Notizen für den Editor
The Wellcome Trust Centre for Cell-Matrix Research was established with an initial Wellcome Trust grant of £2.2 million. This was reviewed in 2000 when a further grant of £3.8 million was awarded. This latest £3.1 million grant is a result of a successful second review carried out on 12 May, 2005.

The Centre is part of the University’s Faculty of Life Sciences, one of the largest and most successful unified research and teaching organisations of its kind in Europe with more than 1,000 researchers, 1,500 undergraduate students and an annual budget of more than £100 million.

In January 2004, the Centre moved to the new Michael Smith Building, named after a former graduate of the University and 1993 Nobel Laureate in Chemistry. This building, which was funded in part by a £15 million JIF grant from the Wellcome Trust and the UK Government, provides outstanding laboratory accommodation for the Centre and facilitates access to a wide range of core equipment facilities, including mass spectrometry, X-ray crystallography and fluorescence microscopy. The Centre occupies about 25 per cent of the total floor space of the building.

There are currently 21 independent investigators within the Centre, with expertise ranging from structure determination to whole organism genetics, from molecular biophysics to molecular imaging in living cells. Currently, the Centre houses 170 researchers, including 50 postgraduate research students.

Research into osteoarthritis at the University can be traced back to 1953 with the appointment of Britain’s first professor of rheumatology, Jonas Kellgren.

The University of Manchester, created from the merger of The Victoria University of Manchester and UMIST in October 2004, is the UK’s largest university with 9,000 staff and 28,802 full-time-equivalent students and an annual income of almost £500 million.

For further information contact:

Aeron Haworth
Press Office
Faculty of Life Sciences
The University of Manchester

Tel: +44 (0)161 275 8383
Mob: +44 (0)7717 881 563
Email: aeron.haworth@manchester.ac.uk

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk/press/title,41223,en.htm

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>