NYU researchers discover mechanism linking color vision and cancer genes

Biologists at New York University have discovered a system by which a random choice between two distinct cellular fates in the fruit fly eye becomes firmly established. Surprisingly, the genes involved are known ’tumor suppressor genes’, i.e. genes that are inactivated in some forms of cancer due to uncontrolled cell proliferation. Because the fly eye is highly amenable to genetic analysis, these findings, published in the latest issue of Cell, could help decipher the mechanisms by which genes that control cell proliferation and cell growth are themselves regulated.

In this study, researchers from Dr. Claude Desplan’s laboratory in the Center for Developmental Genetics at NYU Biology used the fly eye to understand the mechanism that affects the choice between photoreceptors that allows color discrimination: A given color photoreceptor can randomly decide to express a blue, or a green photopigment, but expressing both would lead to sensory confusion. Therefore, a switch mechanism ensures that photoreceptors make an unambiguous decision. Interestingly, the genes involved in this switch appear to be part of a tumor suppressor pathway.

Researchers have recently uncovered processes by which groups of genes work together to affect the number and size of cells. These genes are often affected in cancers where cells proliferate in an uncontrolled manner. Less clear, however, are the upstream mechanisms that control this genetic activity: Understanding the regulation of these pathways is essential as it would enhance our ability to control processes by which cancer cells replicate or die. Although the photoreceptors have long completed their last cell division, they appear to re-utilize the genetic pathways known to control cell proliferation and cell size to achieve a stable state.

“These genes form a bistable loop that insures a robust commitment of color photoreceptors that does allow ambiguity,” said Desplan, the study’s corresponding author. “This represents an unexpected role for genes known to control cell proliferation and cell growth.”

Media Contact

James Devitt EurekAlert!

More Information:

http://www.nyu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors