Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prions Rapidly “Remodel” Good Protein Into Bad

08.09.2005


Two Brown Medical School biologists have figured out the fate of healthy protein when it comes in contact with the infectious prion form in yeast: The protein converts to the prion form, rendering it infectious. In an instant, good protein goes bad.


Green light/red light
Healthy Sup35, tagged with a green fluorescence, changed to red after converting to the infectious prion form.



This quick-change “mating” maneuver sheds important light on the mysterious molecular machinery behind prions, infectious proteins that cause fatal brain ailments such as mad cow disease and scrapie in animals and, in rare cases, Creutzfeldt-Jacob disease and kuru in humans.

Because similar protein self-replication occurs in neurodegenerative diseases, the findings, published in the latest issue of Nature, may also help explain the progression of Alzheimer’s, Parkinson’s and Huntington’s diseases.


Graduate student Prasanna Satpute-Krishnan and Assistant Professor Tricia Serio, both in Brown’s Department of Molecular Biology, Cell Biology and Biochemistry, conducted the research using Sup35, a yeast protein similar to the human prion protein PrP.

The researchers tagged a non-prion form of Sup35 with green fluorescent protein in one group of cells and “mated” these cells with another group that contained the prion form. When the two forms came in contact in the same cell, the green-glowing, healthy protein changed pattern – a visual sign that it converted to the prion form. These results were confirmed in a series of experiments using different biochemical and genetic techniques.

Because proteins can’t replicate like DNA and RNA – the genetic material in bacteria, viruses and other infectious agents – the research helps explain the puzzling process of how prions multiply and spread infection.

Satpute-Krishnan said the speed of protein conversion was surprising. “The prions were taking all the existing protein and refolding it immediately,” she said. “It’s a very, very rapid change.”

After the conversion, the yeast cells remained healthy but had new characteristics. This survival supports the theory that prions have endured through evolution because shape-shifting is advantageous, allowing cells to avoid stress by rapidly adjusting to a new environment.

“Our studies provide some insight into how the appearance of a misfolded protein – a rare event – can lead to devastating neurological diseases,” said Serio. “Just a small amount of prion-state protein can rapidly convert healthy protein into a pathogenic form.”

The National Cancer Institute and the Pew Scholars Program in the Biomedical Sciences funded the research.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>