Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soy protein reduces effects of diabetes on liver

07.09.2005


A group of researchers from Mexico has discovered that a diet rich in soy protein may alleviate fatty liver, a disease which often accompanies diabetes. The details of their findings appear in the September issue of the Journal of Lipid Research, an American Society for Biochemistry and Molecular Biology journal.



The high levels of insulin and insulin-resistance that accompany diabetes are often associated with fatty liver or hepatic steatosis, an untreatable condition that can lead to chronic liver disease and death. In this condition, large lipid-filled compartments accumulate in the cells of the liver due to an increase in production of fatty acids in the liver. The end result is an enlarged liver.

Following up research that indicated that eating soy protein reduces lipid production and prevents hyperinsulinemia (the loss of effectiveness of insulin), Dr. Nimbe Torres, of the Instituto Nacional de Ciencias Medicas y Nutricion in Mexico, investigated the effects of a diet high in soy protein on the development of fatty liver associated with diabetes.


Dr. Torres fed Zucker diabetic fatty rats that develop hyperinsulinemia and hepatic steatosis a diet of soy protein for 160 days. She found that the consumption of soy protein prevented the accumulation of triglycerides and cholesterol in the liver despite the development of obesity and hyperinsulinemia in the rats.

"We also observed that the effects of soy protein were due to a low expression of genes involved in the synthesis of fatty acids and triglycerides in the liver," explained Dr. Torres. "These changes were due to a reduction in the transcription factors that control the expression of genes involved in lipid production."

In addition, levels of a transcription factor involved in controlling genes involved in fatty acid breakdown, as well as its target genes, were increased in rats fed soy protein. Thus, feeding rats a soy-rich diet reduced the amount of fatty acid in their liver by not only reducing lipid production but also by increasing its breakdown.

Although further research is needed, Dr. Torres believes that consuming soy protein could very well reduce insulin resistance, renal damage, and fatty liver, improving quality of life.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>