Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Displaced songbirds navigate in the high Arctic

07.09.2005


By experimentally relocating migratory white-crowned sparrows (Zonotrichia leucophrys gambelii) from their breeding area in the Canadian Northwest Territories to regions at and around the magnetic North Pole, researchers have gained new insight into how birds navigate in the high Arctic. In particular, the findings aid our understanding of how birds might determine longitudinal information--a challenging task, especially at the earth’s poles.



The work is reported in Current Biology by Susanne Åkesson and colleagues at Lund University in Sweden.

Migratory birds navigating over long distances can determine their latitude on the basis of geomagnetic and celestial information, but longitudinal position is much more difficult to determine. In the new work, researchers investigated whether birds can define their longitude after physical displacements in the high Arctic, where the geomagnetic field lines are steep and the midnight sun makes star navigation impossible for much of the summer.


White-crowned sparrows are nocturnally migrating birds that breed in northern Canada and perform long migrations covering a few thousand kilometers to winter in the southern United States. In the study, young and adult white-crowned sparrows were captured with mistnets near Inuvik, NW Territories, Canada, during mid-July to mid-August--the end of the breeding period and shortly before migration--and transported by a Canadian icebreaker along a northeasterly route to nine sites on the tundra, among them the magnetic North Pole (located on Ellef Ringnes Island). The researchers then recorded the birds’ directional orientation in cage experiments.

The scientists found that both adult and juvenile birds abruptly shifted their orientation from the migratory direction to a direction leading back to the breeding area or the normal migratory route, suggesting that the birds began compensating for the west-to-east displacement by using geomagnetic cues alone or in combination with solar cues. The experiments suggest that, in contrast to what would be predicted by a simple genetic-migration program, both adult and juvenile white-crowned sparrows possess a navigation system based on a combination of celestial and geomagnetic information to correct for longitudinal displacements. The results of the study suggest that the birds may in fact use declination--the angle formed between the magnetic North Pole and geographic north--to obtain longitudinal information. Geographic north can be determined by star positions late in the summer, as night returns to the high Arctic.

Heidi Hardman | EurekAlert!
Further information:
http:// www.current-biology.com

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>