Lethal needle blight epidemic may be related to climate change

Increased summer precipitation apparently helping to spread spores of pathogen


Biologists studying a lethal blight of lodgepole pines in northwestern British Columbia present strong evidence in the September issue of BioScience that climate change is to blame for the outbreak. The blight, caused by the fungus Dothistroma septosporum, causes trees to lose their needles and, in the case of the British Columbia outbreak, eventually die. D. septosporum has long been recognized as a pathogen of pines, but although it is considered a serious disease of exotic plantations in the Southern Hemisphere, it has until now been considered a minor threat to northern temperate forests. Lodgepole pines are an economically important species, being used in construction and for pulp.

Alex Woods and his colleagues at the British Columbia Forest Service and the University of Alberta investigated climate records in the area of the outbreak. The records provided no evidence of warming in the affected area in recent years, but they did reveal a clear increase in summer precipitation over the past decade. That constituted a smoking gun, because D. septosporum’s life cycle depends on summer moisture for spore distribution. The increase in precipitation had no clear link to a known climatic oscillation that might have explained it, and the authors conclude that it is most likely related to a directional climate trend. The report of Woods et al. appears to represent one of a growing number of examples of an indirect effect of climate change, because increased summer precipitation would have been expected, absent D. septosporum, to benefit lodgepole pines.

Media Contact

Donna Royston EurekAlert!

More Information:

http://www.aibs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors