Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green catalyst destroys pesticides and munitions toxins

29.08.2005


Results reported at American Chemical Society meeting



A chemical catalyst developed at Carnegie Mellon University completely destroys dangerous nitrophenols in laboratory tests, according to Arani Chanda, a doctoral student who is presenting his findings on Sunday, Aug. 28, at the 230th meeting of the American Chemical Society (ACS) in Washington, D.C. (Division of Industrial and Engineering Chemistry, Convention Center Hall A).

"We found an efficient, rapid and environmentally friendly means of completely destroying these compounds," said Chanda, who works in the laboratory of Terrence Collins, the Thomas Lord Professor of Chemistry and director of the Institute for Green Oxidation Chemistry at the Mellon College of Science (MCS) at Carnegie Mellon.


Nitrophenols are man-made pollutants that mostly originate from wastewater discharges from the dye, pesticide and ammunition industries as well as from various chemical-manufacturing plants. They are also found in diesel exhaust particles. Thousands of tons of these agents are produced yearly by countries around the world. Registered as priority pollutants by the EPA, they are toxic to aquatic life. They produce immediate toxic effects to the nervous system, and some reports have implicated them as possible endocrine disruptors. Many of these compounds cannot be destroyed by existing means.

The catalyst, one of a family of catalysts called Fe-TAML®s (TAML stands for tetra-amido macrocyclic ligand), works with hydrogen peroxide. Its "green" design is based on elements used naturally in biochemistry. Fe-TAMLs were discovered by Collins, whose group has developed an extensive suite of these catalysts to provide clean, safe alternatives to existing industrial practices, as well as ways to remediate other pressing problems that currently lack solutions.

"Fe-TAMLs are much easier to use in destroying nitrophenols because they work at ambient temperatures and neutral pH," said Collins. "Existing detoxification methods are inefficient and work only under acidic conductions. Our method can be used over a much broader pH range, including wastewater pH conditions."

Fe-TAMLs already have shown promise in killing a simulant of a biological warfare agent (anthrax), reducing fuel pollutants, treating pulp and paper processing byproducts, and detoxifying pesticides. A major goal is to develop Fe-TAMLs as a safe, cost-effective means of global water decontamination.

Collins and other members of his laboratory are presenting additional findings about Fe-TAMLs during these sessions at the 230th ACS meeting:

"TAML green oxidation catalysis for safely destroying pollutants and microbes in water," oral presentation by Terrence Collins, INOR 265, Strategies and Molecular Mechanisms of Contaminant Degradation Chemistry, 2 p.m. Monday, Aug. 29, Convention Center 147B;

"Micellar regulation of the activity of Fe-TAML® activators of peroxides in aqueous solutions," poster presentation by Deboshri Banerjee, I&EC 11, 8 p.m. Sunday, Aug. 28, Convention Center, Hall A.

Lauren Ward | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>