Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species evolve to the brink of evolution

29.08.2005


A biologist at The University of Texas at Austin has presented a new theory that sheds light on how organisms, including viruses like HIV, rapidly evolve in the face of vaccines and antibiotics.



Dr. Lauren Ancel Meyers says the new model could help identify genes that increase a pathogen’s ability to evolve quickly against immune responses. Knowing those genes could help scientists develop new and better vaccines.

Meyers’ model predicts that populations can evolve “genetic potential”—genes that can create new traits quickly and simply in changing environments.


“In fluctuating environments, you may get populations evolving right to the brink of evolution,” says Meyers. The organisms are poised to evolve in the face of environmental shifts, because they have genes that can produce a new trait essential to their survival with one or two simple mutations.

Meyers’ model for rapid evolution appears in the Aug. 26 issue of the journal PLoS Computational Biology.

Genetic mutations create the variation that natural selection acts upon. But mutations can be disadvantageous or even deadly, so organisms have evolved so that most simple mutations have little or no biological impact. Mutations are buffered by repair mechanisms and redundancies, like other genes that perform the same function.

For organisms constantly facing new challenges in ever-changing environments, however, there’s an advantage to creating new traits quickly. Previous explanations of rapid evolution have focused on the rate at which mutations occur in the genome. These theories suggest that populations can evolve new traits faster if they are hypermutable, that is, they have faster rates of mutation.

Meyers’ idea is significantly different, because it shows populations can adapt quickly without a faster rate of genetic mutation. Instead, the populations evolve genes that can be easily altered to create new traits.

“Evolution can accelerate without changing the mutation rate itself—it’s the evolution of the ability to evolve—that’s the novel insight of this work,” says Meyers.

Meyers is an assistant professor in the Section of Integrative Biology with a faculty position at the Santa Fe Institute. Co-authors on the paper include Meyers’ father, Dr. Fredric Ancel, from the University of Wisconsin-Milwaukee, and Dr. Michael Lachmann, of the Max Planck Institute in Leipzig, Germany.

Lauren Ancel Meyers | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>