Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapin: A protein with therapy potential for autism

25.08.2005


Rutgers’ Bonnie Firestein likens nerve cells to trees -- some are short and bushy with many branches while others are tall with a few branches coming out of one or two main trunks. Different branching patterns correlate with specific disorders and Firestein’s quest is to discover how these dissimilar patterns come about and why.



A new paper by Firestein and her colleagues at Rutgers, The State University of New Jersey, examines the role of the protein snapin in nerve branch, or dendrite, patterning and its potential as a drug target in therapies aimed at learning and memory disorders. The article will appear in the journal Molecular Biology of the Cell but appeared online today at MBC in Press.

While disorders like autism may arise from a multiplicity of causes, research at the cellular level, such as that of Firestein and her Rutgers team, is creating an important point of entry for early intervention with therapeutic drugs.


Dendrites are the input centers of neurons -- where nerve cells receive information that they pass on to another nerve cell or to the brain. When there is an abnormal decrease in dendrite branches, there are fewer sites to receive information and communication may be impeded. Individuals with disorders such as autism and Rett syndrome display not only fewer branches, but also show two quite different dendrite patterns. Firestein’s most recent work explores the how and why of dendrite branching and patterning.

"It’s not just how many branches there are, but where they are and the pattern they form," said Firestein, an assistant professor in Rutgers’ department of cell biology and neuroscience. "The patterning actually affects the way a cell signals and understanding the patterning could be just as important as understanding how many branches are there. Ultimately, this could lead to new drugs designed to modulate the patterning activity."

Firestein has worked extensively with cypin, a protein that regulates dendrite numbers (a news release is posted online at ur.rutgers.edu/medrel/viewArticle.html?ArticleID=3708). Cypin works on tubulin, a protein that is a structural building block of the dendrite skeleton. Now Firestein’s research group has turned its attention to the protein snapin. When snapin binds to cypin, tubulin is crowded out, so fewer dendrites assemble and more branching occurs.

When researchers overexpressed snapin in hippocampal neurons in the lab, the number of primary dendrites growing out of the cell body decreased, but many more secondary dendrites branched off them.

"This is significant not just in identifying snapin as a protein that shapes the dendrites, but also in pinpointing a drug target where one can regulate the interaction of snapin with cypin," Firestein explained.

Both of these proteins have many other functions in the nerve cell environment and elsewhere in the body. "We need to change cypin’s function for branching but not its other functions," Firestein said. "Rather than a drug that blocks cypin, we need a drug that affects the binding between the cypin and snapin. This is easier to design and cypin can still function with the other proteins it binds to."

Firestein’s goal is to build "a core pathway of dendric branching" – a sequence of steps, each affecting the next, with cypin at the center. "Our pathway says cypin does this; now what regulates cypin? Here snapin has a role. And what does snapin regulate?" said Firestein. "Our hope is in ten years, we will have a whole pathway mapped out so that we can target different points in the pathway with new drugs."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu
http://www.molbiolcell.org/in_press.shtml

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>