Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Target Found to Fight, Treat Parkinson’s

24.08.2005


Neuroscientists from the University at Buffalo have described for the first time how rotenone, an environmental toxin linked specifically to Parkinson’s disease, selectively destroys the neurons that produce dopamine, the neurotransmitter critical to body movement and muscle control.



Microtubules, intracellular highways that transport dopamine to the brain area that controls body movement, are the crucial target, they report.

Damage to microtubules prevents dopamine from reaching the brain’s movement center, causing a back-up of the neurotransmitter in the transport system, the researchers found. The backed-up dopamine accumulates in the body of the neuron and breaks down, causing a release of toxic free radicals, which destroy the neuron.


The study appeared in the Aug. 9 issue of the Journal of Biological Chemistry.

"This study shows how an environmental toxin affects the survival of dopamine neurons by targeting microtubules that are critical for the survival of dopamine-producing neurons," said Jian Feng, Ph.D., assistant professor of physiology and biophysics in the UB School of Medicine and Biomedical Sciences and senior author on the study.

"Based on these findings, we have identified several ways to stabilize microtubules against the onslaught of rotenone. These results ultimately may lead to novel therapies for Parkinson’s disease."

At least 500,000 people are believed to suffer from Parkinson’s disease in the United States, and about 50,000 new cases are reported annually, according to the National Institutes of Health. These figures are expected to increase as the population ages: The average age of onset is about 60. The disorder appears to be slightly more common in men than women.

Feng and colleagues in the Department of Physiology and Biophysics have concentrated their research on the cellular mechanisms of the disease. They are interested specifically in understanding why rotenone destroys neurons that produce dopamine, while sparing neurons that produce other neurotransmitters.

Using cultures of rat neurons, the researches subjected neurons that produce various types of neurotransmitters to agents that mimic the action of rotenone. These results showed that dopaminergic neurons were destroyed while others survived.

They then topped off the treatment by adding the drug taxol, which stabilizes microtubules and prevents their breakdown. Findings showed that by protecting microtubules, the toxic effect of rotenone on dopamine-producing neurons was greatly reduced.

"Based on these findings, we believe that microtubules are a critical target of PD environmental toxins such as rotenone," said Feng. "Since many microtubule-depolymerizing agents are compounds naturally produced in many plants, our research points to the need to examine their possible link to Parkinson’s disease. In addition, PD has a higher incidence in rural areas and is associated with pesticides and insecticides frequently used in farming practices."

The research also opens up novel avenues for the development of PD therapies by targeting microtubules, he said. Feng and colleagues in his laboratory are working actively towards this goal.

Additional researchers on the study were Yong Ren, Ph.D., Wenhau Liu, Ph.D., Houbo Jiang, Ph.D., and Qian Jiang, Ph.D., post-doctoral associates in the Department of Physiology and Biophysics.

The research is funded by a grant from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>