Researchers Discover Model Organism For Studying Viruses that Affect Humans

Researchers at the University of California, Riverside have discovered that a simple worm, called C. elegans, makes an excellent experimental host for studying some of the most virulent viruses that infect humans.


The researchers published their findings in the Aug. 18 issue of the journal Nature in a paper titled, Animal virus replication and RNAi-mediated antiviral silencing in C. elegans.

UCR Professor of Plant Pathology Shou-Wei Ding co-authored the paper with Morris Maduro, assistant professor of biology; Feng Li, a graduate student in microbiology; Rui Lu and Hongwei Li, postdoctoral researchers in Ding’s laboratory; and research specialists Gina Broitman-Maduro and Wan-Xiang Li. Lu and Maduro are co-first authors of this Nature paper. The National Institutes of Health and the U.S. Department of Agriculture supported the research.

The paper reflects a major step forward in the study of how some of the world’s most virulent viruses, such as West Nile, SARS, Ebola and Hepatitis C interact with their hosts.

“All these viruses are very dangerous and are traditionally studied in animal models, so large-scale genetic studies of the host-virus interaction is very hard to do,” said Ding, who works in the Center for Plant Cell Biology at UCR’s Institute for Integrative Genome Biology. “Needless to say, we are all very excited to find that this little worm can be used to understand how hosts genetically control viruses.”

For years researchers throughout the world have studied C. elegans because many aspects of its biology, such as genetics, development and the workings of neurons, mirror the biology of humans. However, no viruses were known to infect the millimeter-long roundworm so it was not used as a model for studying viral infections.

The Nature paper now shows that UC Riverside researchers have developed a strain of the worm, C. elegans, in which an animal virus could replicate, allowing them to map the delicate dance of action and reaction between virus and host.

The UCR team has shown that virus replication in the worm triggers an antiviral response known as RNA silencing or RNA interference (RNAi). RNAi specifically breaks down the virus’ RNA. Virus RNA creates proteins that allow the virus to function. The virus responds by producing a protein acting as a suppressor of RNAi to shut down the host’s antiviral response. Virus infection did not occur when the viral RNAi suppressor was made inactive by genetic mutations in the host system.

C. elegans’ RNAi system is considered a “blanket system,” meaning that it has parallels in humans, making the worm model discovered by Ding and his colleagues a valuable tool in studying the way viruses interact with hosts. This tool may speed the discovery of treatments for virus-caused diseases that plague humans.

“The RNAi machinery is very similar between humans and C. elegans, and human viruses such as Influenza A virus and HIV are known to produce RNAi suppressors,” Ding said. “So now, the question is can we treat human viral diseases using chemical inhibitors of viral RNAi suppressors?”

The methods outlined in the Nature paper are now being used to generate additional C. elegans strains for screening chemical compounds that inactivate RNAi suppressors associated with avian flu, HIV and others.

Media Contact

Ricardo Duran EurekAlert!

More Information:

http:// www.ucr.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors