Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologist Discovers What May Be World’s ’Pickiest’ Mates

03.08.2005


Photo of male California fiddler crab
Credit: Catherine deRivera


California fiddler crabs may be among the world’s pickiest animal when it comes to selecting a mate.

A study conducted by a biologist at the University of California, San Diego that appears in the August issue of the journal Animal Behaviour found that females of the species Uca crenulata may check out 100 or more male fiddler crabs and their burrows before finally deciding on a mate.

“As far as I know, no other species has been observed sampling nearly as many candidates as the California fiddler crab,” said Catherine deRivera, who conducted the study while a doctoral student and a lecturer at UCSD. She is now a research biologist at the Aquatic Bioinvasions Research and Policy Institute, a joint entity of the Smithsonian Environmental Research Center and Portland State University.



deRivera and a group of UCSD students who assisted her conducted their observations in the Sweetwater River estuary in Chula Vista, south of San Diego, near the Mexico-U.S. border. She said previous studies of mate selection in other animals, such as birds and the natterjack toad, found that females of most species typically sampled only a handful of potential mates before making a final selection.

“Most animals sample just a few mates, presumably because search costs override the benefits of lengthy searches,” she said in her paper. But female California fiddler crabs are much pickier, she discovered in her study, checking out male suitors and their bachelor pads an average of 23 times before making a final selection. One particularly choosy crab visited 106 male burrows, fully entering 15 of them, during her one hour and six minute search.

Why are female fiddler crabs so picky? The survival of their offspring, deRivera found in her experiments, appears to be strongly linked to the size of their mate and, more importantly, his corresponding abode.

“The size of the male’s burrow affects the development time of his larvae,” she said. “A burrow of just the right size allows larvae to hatch at the safest time, the peak outward nighttime flow of the biweekly tidal cycle.”

“Wide burrows speed incubation, so they cause the larvae to hatch too early and miss the peak tides. This research provides one of the first examples of how choosy resource selection can help offspring survivorship.”

Male fiddler crabs attract suitors by standing in front of their burrows and waving their enlarged claws at prospective female passers by, much as humans motions “come here” with their arms and hands

“The California fiddler crabs use a lateral wave that looks much like a human beckoning ’come here’,” deRivera said. “It also seems to serve as a ’come hither’ signal, as a male waves, standing at his burrow entrance, and interested females come over.”

Interested females initially eye the males, who select their burrows based upon their body size, and if they’re interested, partially or fully enter a burrow to size it up.

“The burrow openings, which are circular, are just big enough for the owners to get in,” deRivera said. “Crabs enter burrows sideways so have to fit in front to back and top to bottom.”

When a female has found a mate and burrow to her liking, typically one that is about the same size as she, either she or the male will plug up the opening of the burrow and the couple will mate and incubate their eggs, which later hatch and release tiny crab larvae that are quickly flushed from the estuary by high night tides.

deRivera found that larger female crabs couldn’t be as picky about choosing mates as their smaller counterparts. They took less time, she noted, because they entered fewer burrows, primarily because many of the burrows they passed were too small to accommodate them and successfully incubate their eggs and release their larvae.

“Larvae were successfully released during high-amplitude nocturnal tides only when females incubated in burrows that allowed the larvae to exit the estuary swiftly and thus reduce predation risk, but not when females incubated in burrows that were too wide or narrow,” deRivera writes in her paper. “The effect of burrow aperture on incubation duration may explain why females sampled many male burrows as they searched for a mate and why females of different size classes selected and sampled differently.”

Comment: Catherine deRivera (503) 725-9798, derivera@pdx.edu, derivera@si.edu
Media Contact: Kim McDonald (858) 534-7572

Catherine deRivera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>