Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical step traced in anthrax infection

29.07.2005


Pore protein plays active role in toxins’ entry into cells



Scientists at Harvard Medical School (HMS) have revealed details of a key step in the entry of anthrax toxin into human cells. The work, which grew out of an ongoing effort to produce a better anthrax therapeutic, shows that the protective antigen component of the bacterial toxin plays an active role in transferring the other two components of the toxin through the cell membrane. The research, led by R. John Collier, professor of microbiology and molecular genetics at HMS, provides insight into the broader question of how proteins cross cell membranes. The findings appear in the July 29 issue of Science.

An anthrax bacterium secretes three nontoxic proteins that assemble into a toxic complex on the surface of the host cell to set off a chain of events leading to cell toxicity and death. Protective antigen (PA) is one of these proteins, and after binding to the cell, seven copies of it assemble into a specific complex that is capable of forming a pore in a cellular membrane. The pore permits the other two proteins, lethal factor (LF) and edema factor (EF), to enter the cell interior, where the factors interfere with metabolic processes, leading to death of the infected individual.


Details surrounding this process are continuing to be uncovered in Collier’s lab. "Until now, we have not known whether the PA pore serves simply as a passive conduit, or alternatively, plays an active role in shepherding the unfolded LF and EF molecules through," he said. The findings show that it is the latter?the pore takes an active role in protein translocation.

The scientists demonstrated this role by investigating the channel’s chemical make-up. Using a procedure known as cysteine-scanning mutagenesis, they identified the hydrophobic, or "greasy," amino acid phenylalanine in protective antigen’s pore-forming domain. Seven of these amino acids project into the lumen of the pore and form a collection of greasy residues, nicknamed "the phi-clamp" by the scientists. Because the water-filled lumen of the membrane pore is smaller than the folded lethal factor and edema factor, these proteins must first unfold before being actively translocated through the heptameric channel. The clamp appears to work as a chaperone, interacting with the hydrophobic sequences on the two factors as they unfold during translocation. The researchers demonstrated that the phi-clamp was critical to infection by mutating the region and thereby blocking translocation of the toxin proteins.

These recent experimental results extend and explain a 1999 discovery by the Collier lab identifying a set of mutations in protective antigen that prevent translocation, some of which represented a new type of antitoxin that may be useful in anthrax treatment.

In the recent work, Collier and his colleagues found that the phi-clamp composes the main conductance-blocking site for hydrophobic drugs, and it is one of their targets for further investigation. "I believe discovery of the phi-clamp will prove to be one of the high points along the path to understanding how translocation occurs in this system," Collier said.

One of the greatest strengths of the experiment, according to Collier, was the integrative use of technologies applied to the testing procedures. Both cellular systems and model electrophysiological membrane systems were used to test the potency of the anthrax toxin. "We tried to bridge reductionist science with the in vivo situation ?we have to do both to make correlations," he said.

The researchers, who were funded by the National Institutes of Health and the National Science Foundation, will continue to study protein unfolding in translocation during anthrax infection, which may prove to be relevant in other biological systems. "This is only a partial picture," Collier said. "There are still major outstanding questions about the overall process that need to be addressed."

Leah Gourley | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>