Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites trigger healthy eating in caterpillars

28.07.2005


Some parasites trigger their own destruction by altering their hosts’ behavior, researchers at The University of Arizona and Wesleyan University report in Nature.



Many parasites have developed mechanisms that suppress their hosts’ ability to fight them off or even change their behavior in favor of the parasite. "We found the opposite is true with tiger moth caterpillars and their parasites," said UA Regents’ Professor Emerita Elizabeth Bernays.

Bernays discovered the previously unknown phenomenon when she studied tiger moth caterpillars infected with parasitic fly larvae. The presence of the parasites alters their hosts’ taste organs. As a result, the caterpillars prefer to consume plants containing chemicals toxic to the parasites.


Bernays, who is in the department of entomology at UA’s College of Agriculture and Life Sciences and in the Division of Neurobiology at UA’s Arizona Research Laboratories, did the research with Michael Singer, a former doctoral student of hers who is now an assistant professor in the department of biology at Wesleyan University in Middletown, Conn.

"It is a new and surprising kind of interaction between organisms," said Bernays. "When parasites change the behavior of their hosts, it’s usually to their advantage."

The chemical war starts when parasitic flies of the tachinid family seek out their victims, the caterpillars of two species of tiger moth, Grammia geneura and Estigmene acrea. The flies lay their eggs on the outer surface (cuticle) of the caterpillar. As soon as the larvae hatch they bore through the cuticle and squeeze inside the caterpillar’s body. Inside they feast on the caterpillar’s tissue, using it as an ever-fresh live supply of food. When the fly larvae have eventually consumed and killed their host, they pupate and develop into adult flies.

But in the case of the tiger moth, co-evolution between parasite and host has resulted in an arms race involving chemical weapons.

Some plants that the caterpillars feed on produce chemicals that are toxic to the parasites and kill them. The chemicals, known as pyrrolizidine alkaloids and iridoid glycosides, are secondary compounds made by plants such as ragwort and plantain. When the caterpillars consume those plants, the substances become distributed throughout the caterpillar’s body. The caterpillars store especially high amounts in their skin and blood to deter various natural enemies.

"Normally the caterpillars wander around and eat lots of different plants," explained Bernays.

But caterpillars with parasites in their bodies behave differently, the team found.

"They are likely to stay longer on those plants that contain the protective chemicals, thus eating more of the plants that are good for them," said Bernays.

Using neurophysiological methods, Bernays and Singer figured out why parasitized caterpillars switch to a more healthful eating behavior.

When parasites are present in a caterpillar, its taste cells react differently to chemicals in the food. The cells become more responsive to the protective chemicals and less sensitive to other chemicals, which are present in the same plants but are distasteful to the caterpillar and normally cause it to crawl off and look for tastier plants elsewhere.

As a result, the change in behavior elicited by the parasites makes parasitized caterpillars consume more of the beneficial plants. In many cases, the altered behavior helps the caterpillar to escape its impending doom because the plant chemicals kill off its parasites.

Bernays and her co-worker have not yet figured out by what mechanism the parasite elicits the change of behavior on a physiological level. "It’s still a mystery how they do it," Bernays said. "But the result for the caterpillars is the same: They can survive because they find the protective plants more tasty."

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>