Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New finding may aid adult stem cell collection

27.07.2005


CINCINNATI-Cincinnati scientists have discovered how blood-regenerating stem cells move from bone marrow into the blood stream.



The finding has led to the development of a new chemical compound that can accelerate this process (called stem cell mobilization) in mice--which could eventually lead to more efficient stem cell harvesting for human use.

The researchers, from the Cincinnati Children’s Hospital Medical Center and the University of Cincinnati (UC), studied the migration of mouse stem cells to better understand how adult cells move into the bone marrow during stem cell transplants--or can be directed into the blood stream, where they can be more easily harvested for use in transplant procedures.


The team, led by Jose Cancelas, MD, PhD, and David Williams, MD, found that a group of proteins known as the RAC GTPase family plays a significant role in regulating the location and movement of stem cells in bone marrow.

Dr. Cancelas, lead author of the report, is director of research at UC’s Hoxworth Blood Center. Dr. Williams, the senior author, heads experimental hematology at Cincinnati Children’s.

The researchers discovered that by inhibiting RAC GTPase activity in mice, they were able to "instruct" stem cells to move from their home in the bone marrow and into the blood stream, where they can easily be collected. They achieved this using a drug, developed by Cincinnati Children’s faculty member Yi Zheng, PhD, known as NSC23766.

Their findings are reported in the Aug. 6 edition of the scientific journal Nature Medicine.

Scientists have long known that bone marrow stem cells regenerate blood cells. Recent research has also suggested that these cells may help repair damage in other organs, such as the heart and brain.

Injected during transplants procedures, stem cells migrate to a specific location in the bone marrow, where they reestablish the mechanism of blood formation.

"Our findings demonstrate that RAC GTPase proteins are essential for injected stem cells to migrate into the correct location in the bone marrow," said Dr. Williams.

Researching the location of and the factors involved in stem cell regeneration is important to the development of new therapeutic tools in stem cell therapy, said Dr. Cancelas, lead author of the report.

"We wanted to know why stem cells are located in specific pockets of the bone marrow," he said, "and how can they be mobilized to move into the blood stream for easier collection."

Adult stem cell transplantation, or bone marrow transplantation, is used during the treatment of cancer and genetic blood diseases, such as sickle cell anemia, to restore blood cell formation in bone marrow that has been damaged by high-dose chemotherapy or radiation therapy. It has also shown promise in animal studies for possible treatment of organ damage, such as that seen in heart disease and degenerative diseases like Parkinson’s.

During high-dose radiation therapy treatment, given to kill advanced cancer, normal stem cells found in bone marrow are also destroyed. Without a bone marrow transplant, new blood cells cannot be produced and the patient will die.

When bone marrow or adult stem cells are taken from a matching donor and injected into the patient after radiation or chemotherapy, the cells move through the recipient’s blood stream and settle in the same type of tissue they inhabited in the donor.

Although bone marrow is the best known reservoir of stem cells, only one of 100,000 cells in the marrow is a stem cell. There are also small reservoirs of stem cells in other major organs, such as brain, muscle, heart and other tissue.

The research team also included Andrew Lee, Rethinasamy Prabhakar, PhD, and Keith Stringer, MD, PhD. Their work was supported by grants from the National Institutes of Health and the National Blood Foundation.

More than 40,000 bone marrow transplants are performed each year worldwide, about 25,000 using the recipient’s own tissue, and 15,000 using tissue from matching donors.

Sheryl Hilton | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>