Development Causes Aging

Development, the process that gives rise to an adult organism also causes aging, according to Harvard Medical School researchers Joao Pedro de Magalhaes and George Church. Joao Pedro de Magalhaes is a Portuguese microbiologist.

In “Genomes Optimize Reproduction: Aging as a Consequence of the Developmental Program,” appearing in the August issue of the journal Physiology, Joao Pedro de Magalhaes and George Church assert that the aging process is driven by the same genetic processes that drive development.

The idea that development is linked to aging has been frowned upon by scientists for decades, but new evidence demonstrates the two are not only linked but that aging and development are regulated by the same genetic mechanisms. “We now know of several animals that can delay development and as a result delay aging as well,” said lead author de Magalhaes. “Even in mammals there is growing evidence that aging is a consequence of developmental mechanisms. For instance, the pace of development influences the pace of aging, suggesting that the timing of developmental mechanisms determines the timing of aging in mammals.” Hence, the researchers argue that the same genes that regulate the way children grow and develop will later be responsible for their degeneration.

While the same genes drive development and aging, the researchers do not consider that aging is an intentional product of evolution like development. “I don’t think aging is under strong selection,” de Magalhaes said. “What happens, at least in higher organisms like mammals, is that evolution is not about selecting for long life. Evolution is about optimizing developmental mechanisms for reproduction. Once an organism has passed its genes to the next generation evolution gives up on it and the same genes responsible for the growth and maturation of that organism will inadvertently end up killing it. Examples include cell proliferation genes that are crucial in embryonic development but at older ages become harmful and can cause cancer and other age-related diseases.”

One optimistic aspect of this new work is that scientists already know a number of genes regulating development and aging. “Some hormones like growth hormone and genes involved in insulin-like signaling appear to do just that: they regulate growth and development early in life and later contribute to aging. Still,” de Magalhaes warned, “there is a lot of work to be done before we know all the genes involved. Development and aging are so complex that it will be some time before we fully understand them.”

Media Contact

Joao Magalhaes alfa

More Information:

http://www.med.harvard.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors