Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genetic origins of corn on the cob

25.07.2005


New gene plays central role in plant architecture and crop domestication





In 1909, while harvesting a typical corn crop (Zea mays) in Illinois, a field worker noticed a plant so unusual that it was initially believed to be a new species. Its "peculiarly shaped ear" was "laid aside as a curiosity" and the specimen was designated Zea ramosa (from the Latin ramosus, "having many branches"). Due to the alteration of a single gene, later named ramosa1, both the ear and the tassel of the plant were more highly branched than usual, leading to loose, crooked kernel rows and to a tassel that was far bushier than the tops of normal corn plants.

Now, researchers at Cold Spring Harbor Laboratory in New York have isolated the ramosa1 gene and shown how it controls the arrangement and length of flower-bearing branches in corn, related cereal crops, and ornamental grasses. The study indicates that during the domestication of corn from its wild ancestor (teosinte), early farmers selected plants with special versions of the ramosa1 gene that suppressed branching in the ear, leading to the straight rows of kernels and the compact ears of modern-day corn on the cob. The findings are described in the July 24 advance online edition of the journal Nature.


"We’ve shown that corn and related grasses have either none, some, or a lot of ramosa1 gene activity, and that these different levels of activity have a big impact on the architecture of the plants," says Dr. Robert Martienssen of Cold Spring Harbor Laboratory, who led the study. "The ramosa1 gene appears to be a key player in the domestication of corn, and we’ve shown that it acts by signaling cells to form short rather than long branches," says Martienssen, who was joined in the study by lead author Dr. Erik Vollbrecht, now at Iowa State University.

Says Vollbrecht, "We solved this enduring puzzle by combining classical and modern molecular genetics. The former included our use of transposable elements or ’jumping genes’--discovered at Cold Spring Harbor by [Nobel laureate] Barbara McClintock--to ’tag’ the ramosa1 gene. That enabled us to isolate the gene and determine its DNA sequence for a variety of other experiments."

"As corn was being domesticated, farmers selected a larger and larger ear with more and more rows of kernels, based on the activity of genes other than ramosa1. But we suspect that as the ear got larger, it needed special alleles of ramosa1 to prevent the extra rows from forming branches instead of kernels," says Martienssen. "There may have been other reasons for selecting an unbranched ear, including the interaction with other genes that were subsequently lost during domestication, but we don’t yet know if this is the case."

The study reveals that plants with more ramosa1 activity (e.g. typical corn) tend to have fewer branches, shorter branches, and fewer flowers whereas plants with less ramosa1 activity (e.g. sorghum, rice, and the ramosa corn variety described above) tend to have more branches, longer branches, and more flowers.

"We also looked at a popular ornamental grass that grows outside my office and found the same result. It has a spiky top like corn, so we were delighted to find that they have similar profiles of ramosa1 activity," says Martienssen.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

nachricht SERSitive: New substrates make it possible to routinely detect one molecule in a million
10.08.2018 | Institute of Physical Chemistry of the Polish Academy of Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018 | Physics and Astronomy

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>